
EZTwain Pro 4.0
User Guide
A developer's guide to the EZTwain library
version 4.0

Si, Quattro!
Cosa, quattro re? Quattro cilindri?
Quattro formaggio?

Hyperlinks EZTwain Pro page: http://www.eztwain.com/eztwain4.htm
Support: http://www.atalasoft.com/products/dotimage/forums

Author Spike McLarty for Atalasoft
Revised 2/28/2011
Copyright © Atalasoft, Inc. All rights reserved.
Trademarks EZTwain Pro is a trademark of Atalasoft, Inc. Microsoft and Windows are trademarks of

Microsoft Corporation. All other trademarks are the property of their respective owners.

http://www.dosadi.com/eztwain3.htm
http://www.atalasoft.com/products/dotimage/forums

EZTwain Pro User Guide

Table of Contents
Table of Contents ... 1
Introduction ... 3
Overview ... 4

EZTwain Components .. 4
EZTwain Developer Files .. 6

How-To Guide .. 8
How To: Use the Code Wizard to get started ... 8
How To: Use EZTwain from other languages ... 10
How To: Statically Link to EZTwain .. 11
How To: Redistribute EZTwain with your Application .. 12
How To: Obtain a License Key ... 12
How To: Select a Device for Input ... 13
How To: Acquire an Image ... 15
How To: Negotiate Scanning Parameters .. 16
How To: Scan a Multipage Document ... 17
How To: Hide the Source User Interface ... 18
How To: Control a Document Feeder (ADF) ... 19
How To: Skip Blank Pages .. 20
How To: Read Patch Codes ... 21
How To: Append to PDF, TIFF & DCX Files .. 22
How To: Check for Device On-Line ... 22
How To: Do Other Random Stuff ... 22

Function Reference ... 23
Functions – Application Name & Licensing .. 23
Functions – Image Acquisition ... 26
Functions – Global Modes & Queries ... 34
Functions – Post-Processing .. 36
Functions – Extended Image Information ... 40
Functions – DIBs & Image Processing ... 43
Functions – Printing ... 68
Functions – Barcode Recognition ... 72
Functions – Optical Character Recognition (OCR) .. 79
Functions – Image Files .. 84
Functions – Image Files in Memory .. 95
Functions - TIFF Specific .. 97
Functions - PDF Specific ... 100
Functions – File Uploading .. 107
Functions – Image Viewing ... 113
Functions – Error Handling & Logging ... 116
Functions – TWAIN State .. 119
Functions – Capability .. 122
Functions – Settings Dialog ... 140
Functions – Custom DS Data ... 141
Functions – Container .. 142
Functions – Testing & Validation .. 146
Functions – Obscure (Even for TWAIN) ... 147

Glossary .. 153
Appendix 1 - History ... 159

Changes from EZTwain Pro 3.0 .. 159
Appendix 2 - Working with Containers ... 161
Appendix 3 - Multithreading with EZTwain ... 167
Appendix 4 - EZTwain Datatypes .. 169

EZTwain Pro User Guide

Index .. 171

Page 2

EZTwain Pro User Guide

Introduction
This guide describes how to use the Atalasoft EZTwain library to add scanning or
image-acquisition to a Microsoft® Windows® application. If you don’t know much
about TWAIN, the image-input standard that EZTwain is built on, don’t worry – the
necessary concepts and explanations are included.

For changes from previous versions of EZTwain, see Appendix 1 - History.

What is EZTwain? EZTwain is a Windows DLL that provides an easy-to-use
wrapper for the TWAIN API. TWAIN is the most widely supported API for controlling
scanners, and downloading images from cameras. EZTwain makes TWAIN easier for
developers by radically reducing their learning and programming effort – which
means fewer bugs, lower cost, more predictability, shorter schedules, and we believe
fewer support problems.

With EZTwain, you can
 Acquire an image from a TWAIN-compliant device, bringing the image into

memory or writing it immediately to a file, with one call.

 Select the output file format to be BMP, JPEG, PNG, DCX, TIFF, or PDF.

 Display the TWAIN dialog that allows the user to select among his or her
TWAIN devices, or - enumerate the devices and present a list to the user, or -
select a specific device by name.

 Suppress the normal user interface presented by a device, and take control of
the scanning process from your program.

 Restrict or pre-select the scanning mode (B&W, Grayscale, RGB Color), the
bit-depth, resolution, transparent versus reflective media, brightness,
contrast, threshold, auto-brightness, duplex, and any other options offered by
the device through TWAIN.

 Detect and control a document feeder (ADF).

 Scan multiple pages, discard blank pages, deskew (straighten) crooked pages.

 Collect scans into multi-page TIFF, DCX, or PDF files.

 Load, examine, display, and write image files in all supported formats.

 Query any property that your TWAIN device offers, and manipulate that
property in any way allowed by TWAIN and the device.

 Upload images to a server via HTTP in any supported file format.

Atalasoft maintains, supports, and licenses EZTwain, as well as other tools for
TWAIN developers. For more information, please visit www.atalasoft.com.

http://www.dosadi.com/

EZTwain Pro User Guide

Overview

EZTwain Components
The EZTwain Pro Toolkit setup offers to install two sets of files:

Shared EZTwain DLLs
Developer Files
(or both)

If you choose to install the Shared DLLs, the DLLs listed in the table below are copied
to the System folder:

C:\Windows\System32 (on most 32-bit versions of Windows)
C:\Windows\SysWOW64 (on 64-bit Windows)

If you choose to install Developer Files, the DLLs listed below are copied into
C:\Program Files\EZTwain\Redist (32-bit Windows)
C:\Program Files(x86)\EZTwain\Redist (64-bit Windows)

These are the DLLs that you use and distribute with your applications. If you are
concerned about disk space or file sizes, the table below will help you decide which
DLLs are required for your application.

See also: How to Redistribute EZTwain with your Application, page 12

Note that on 64-bit Windows, 32-bit processes that access the 'System32' folder are
redirected to SysWOW64 – which means that if your 32-bit code loads e.g.
“\Windows\System32\Eztwain3.dll”, this will still work on 64-bit Windows.

Shared EZTwain DLLs

Eztwain3.dll DLL containing the EZTwain Pro functions. It is not
an ActiveX control or COM server, and does not need
to be registered.

EZT4Jpeg.dll Optional DLL. Required to read and write JPEG,
TIFF or PDF format files.

EZT4Tiff.dll Optional DLL to read and write TIFF files. Requires
EZT4Jpeg.dll.

EZT4Pdf.dll Optional DLL to write PDF files and to a limited
extent read them. Requires EZT4Jpeg.dll.

EZT4Png.dll Optional DLL to read and write PNG files

EZT4Gif.dll Optional DLL to read and write GIF files.

EZT4Dcx.dll Optional DLL to read and write DCX files.

EZT4Symbol.dll Optional DLL to provide barcode recognition.

EZT4Curl.dll Optional DLL to provide network file transfer (HTTP)

EZT4Ocr.dll Optional DLL to interface to Transym OCR engine.

Page 4

EZTwain Pro User Guide

Page 5

EZTwain Pro User Guide

EZTwain Developer Files
When you run the EZTwain Pro Toolkit setup, if you choose to install Developer Files
the toolkit setup will create a file structure under the Program Files folder:

\Program Files\EZTwain (32-bit Windows)
\Program Files(x86)\EZTwain (64-bit Windows)

The table below describes the contents of this file structure.

Developer Files

. EZTwain install folder - Contains the Licensing Wizard,
EZTwain license, this User Guide, Twirl,Twister,
DosadiLog, EZTCheck, History.txt, Readme.txt.

.\Access Contains eztwain.bas declaration file for use in VBA,
and several small customer-donated Microsoft Access
databases that use EZTwain.

.\Alpha5 eztwain. - declarations for Alpha Five.

.\BCB Eztwain4.lib and Eztwain.h, for use in Borland C++
Builder programs.

.\Clarion eztwain.clw and eztwain4.lib for Clarion

.\CSharp eztwain.cs declaration file for C#

.\CSharp Sample Sample C# program

.\dBASE eztwain.h declarations for use with dBASE & co.

.\Delphi EZTwain.pas declaration file and a small sample
application for Borland Delphi 6.

.\Java eztwain.java - Experimental JNA-based binding.

.\LabVIEW Eztwain.h – for use with Import Shared Library

.\LotusScript eztwain.lss declaration file for Lotus Notes/Domino.

.\Perl Eztwain.pl declaration file, and a small sample program
in Perl.

.\PowerBASIC eztwain.inc declaration file.

.\PowerBuilder Eztwain.txt - declarations and constant definitions to
use EZTwain from Sybase PowerBuilder.

.\Progress eztwain.i – file containing external declarations to use
EZTwain from Progress 4GL.

.\Python eztwain.py – experimental Python binding using ctypes

.\Redist Copies of all the redistributable EZTwain DLLs.

.\Static contains EZT4MT.LIB - a static link library version of
EZTwain. See How To: Statically Link to EZTwain
Pro.

.\VB EZTwain.bas declaration file, and a small sample

Page 6

EZTwain Pro User Guide

application for Visual Basic

.\VB.NET EZTwain.vb declaration file for use in VB.NET

.\VB.NET Sample Sample VB.NET program

.\VC Microsoft Visual C++ files:
 EZTwain.h and EZTwain4.lib
 TWAIN.H – TWAIN API, in case somebody needs it.

.\VFP Visual FoxPro declaration file.

Page 7

EZTwain Pro User Guide

How-To Guide

How To: Use the Code Wizard to get started
Our Code Wizard supports the following languages:

 Borland Delphi (5 thru 8)
 C# for .NET
 LotusScript
 Microsoft Visual C++ (6 or 7) with MFC
 Microsoft Visual C (6 or 7)
 PowerScript for PowerBuilder
 Visual Basic (5, 6 or 7) including VBA
 Visual FoxPro (7 & 8)
 VB.NET
 WinDev (English et Français)

For these languages, you should launch the Code Wizard (under Start - Programs -
EZTwain) and step through it to generate code for some simple task like selecting
the default TWAIN device, or doing a scan with default settings. The Wizard includes
instructions for bringing EZTwain into your application. Then review the sections
below to see if there are any specific comments for your language.

Microsoft Visual Basic 5, 6, or 7
Run the Code Wizard to get started - see above.

Sample: The \vb folder contains a small EZTwain sample application called VBTwerp,
which has been tested with Visual Basic 5.

The EZTwain installer places the EZTwain DLLs in the System32 folder, so your
program should not have trouble finding them.

See Also: Converting between DIBs and VB Pictures (p. 51)

C# and VB.NET
Run the Code Wizard to get started - see above.

In the EZTwain folder (usually under Program Files), there are sample programs in
folders named: VB.NET Sample Application and CSharp Sample Application.

From .NET, EZTwain is basically just a big friend class with a lot of public/static
functions. There are a few points to be aware of:

1. All of the TWAIN_xxx functions have had the TWAIN_ prefix stripped, so they
are just EZTwain.xxx. For example, TWAIN_Acquire(0,0) becomes
EZTwain.Acquire(0,0).

2. All of the constants defined in EZTwain.vb or EZTwain.cs need to be qualified
just as the functions do e.g. EZTwain.TWPT_BW,
EZTwain.EZT_TEXT_NORMAL, and so on.

Page 8

EZTwain Pro User Guide

3. Unfortunately, two functions, TWAIN_Set and TWAIN_Get, conflict with the
VB.NET keywords 'Set' and 'Get', so they are aliased to EZTwain.SetCap and
EZTwain.GetCap. You are not likely to need these, but just in case.

4. EZTwain works with quite a few kinds of 'platform' (native Windows API)
handles, such as DIB handles, HBITMAPs and HWND Window handles. These
are pretty much all translated to System.IntPtr per Microsoft's
recommendation. As a result you must be careful to read the documentation
to see exactly which kind of handle you are - er - handling. Don’t mix them
up!

5. We provide a function DIB_ToImage that copies an EZTwain DIB into a .NET
Image object, for VB.NET. Contact us if you need the equivalent code for C#.

Please contact Atalasoft technical support if you encounter any problems using
EZTwain Pro from .NET. We are committed to resolving such problems promptly.

Microsoft Visual FoxPro
Run the Code Wizard to get started - see above.

For a nice introduction to using EZTwain from VFP, see this article by Mike Lewis of
Mike Lewis Consultants Ltd:
http://www.ml-consult.co.uk/foxst-29.htm

See the general discussion under Redistributing EZTwain with an Application.

Borland Delphi
Run the Code Wizard to get started - see above.

There is a very small Delphi EZTwain sample application, created with Delphi 6, in
the EZTwain\Delphi folder, including the project file: You should just be able to
double-click the project file to open the sample in Delphi.

Caution: The sample converts images from the DIB format delivered by EZTwain,
into the TBitmap format favored by Delphi. We do not recommend converting
images from DIB to TBitmap and back because information (particularly DPI) can be
lost if you do this.

Microsoft Visual C++
Run the Code Wizard to get started - see above. Note: It is possible to statically link
EZTwain Pro, see How To: Statically Link to EZTwain, p 11.

LotusScript
PowerScript - PowerBuilder
Run the Code Wizard to get started - see above. Note that we provide one
declaration file named 'eztwain.txt' for PowerBuilder version 10 and later, and
another named 'eztwain-pb9.txt' for PowerBuilder 9 and earlier, due to incompatible
declaration syntax. Make sure you use the right one.

Page 9

http://www.ml-consult.co.uk/foxst-29.htm

EZTwain Pro User Guide

How To: Use EZTwain from other languages

LabVIEW
We do not offer any pre-written LabVIEW code, but several customers have used
EZTwain from LabVIEW.

For links and the most up-to-date information about using EZTwain from LabVIEW,
visit our LabVIEW Support Page at: http://www.eztwain.com/ezt3labview.htm

Perl
We do not understand Perl! But one of our customers helped us create a Perl
declaration file and a small sample. They can be found in the EZTwain toolkit
folder \Program Files\EZTwain\Perl

Borland C++ Builder (BCB)
EZTwain Pro has been used successfully from BCB 6.0 – The toolkit includes a header
file EZTwain.h, and a link-library Eztwain4.lib, which by default is copied to this
folder: \Program Files\EZTwain\BCB

Warning: The default handling of floating-point exceptions is different in Microsoft
languages, and Borland languages. Certain TWAIN device drivers will generate fatal
run-time exceptions if they are invoked from Borland applications unless precautions
are taken. See our advisory: http://www.eztwain.com/borland-issue.htm

Microsoft Access (VBA)
We don’t claim any expertise with Microsoft Access, but several customers who are
regular Access users have donated sample code for accessing (cough) EZTwain Pro.
Their databases can be found in: \Program Files\EZTwain\Access

Clarion, dBASE (dBASE+, VDB), PowerBASIC, Progress 4GL
If you look in the toolkit folder \Program Files\EZTwain you will find sub-folders for
these languages, and perhaps others. In those subfolders will be a file containing
external declarations for all EZTwain functions. There are also blocks of constant
definitions, which you may use at your convenience, and in some cases there are
small sample programs.

Java
We do not provide a Java binding, but customers have suggested JNI, JNA, and
JNative all as useful. Search our Forum for more details:
http://www.eztwain.com/Forums/

Other languages
For other development platforms, please contact Atalasoft support via our Forums
http://www.atalasoft.com/products/dotimage/forums?forumid=16

Page 10

http://www.atalasoft.com/products/dotimage/forums?forumid=16
http://www.dosadi.com/Forums/
http://www.dosadi.com/borland-issue.htm
http://www.dosadi.com/ezt3labview.htm

EZTwain Pro User Guide

How To: Statically Link to EZTwain
This section assumes you are using Microsoft Visual C/C++. For other languages or
compilers, you are responsible for adapting the following advice.

When you install the EZTwain Pro toolkit, you designate a main folder for the various
developer files. Under that folder is a subfolder called Static containing a statically
linkable library: EZT4MT.LIB. This library contains almost all (exceptions noted
below) of the functions from Eztwain DLL.

Note: The static library directly supports only BMP file format: To read or write any
other file format, the same DLLs as described in Shared EZTwain DLLs must be
present and loadable.

 Use the function declarations from eztwain.h, and link to EZT4MT.LIB.

 EZT4MT.LIB links to LIBCMT or LIBCMTD, the multithreading version of the C
runtime library. EZTwain uses multithreading internally, so your application
must also be compiled for multithreading.

 Call EZTWAIN_Attach() before calling any other EZTwain function.
Make a matching call to EZTWAIN_Detach() before terminating the
application.

 TWAIN_ViewFile and DIB_View are missing - they depend on dialog resources
that are not included in the .LIB

Page 11

EZTwain Pro User Guide

How To: Redistribute EZTwain with your Application
There are two main questions when redistributing EZTwain: Where to put the DLLs,
and how to obtain a license (key).

Where to Put the DLLs
If you are preparing a software package to be distributed with EZTwain, you have
three main alternatives:

Alternative 1. Follow the lead of the EZTwain Developer Kit and install the EZTwain
DLLs in the System (System32) folder. The sample apps and various definition files
are set up for this, using unqualified references to “eztwain4.dll”.

If you have your own installer, it must compare versions before overwriting the
EZ*.DLL files in the system folder, and only overwrite a higher version with a lower
after strenuous warnings to the user. This is a specific obligation under the EZTwain
Pro License Agreement. Any responsible install tool will do this by default, or at least
offer it as an option.

This alternative leaves you exposed to the following risk: Another product could be
installed after yours, replacing your EZTwain DLL’s with higher-versioned ones. Or
vice-versa: Your application could replace older DLLs installed by a previous
application. Either way, if the new DLLs are not sufficiently backward compatible,
one or both of the applications involved can stop working. We make every effort to
keep our DLLs backwards-compatible, but it cannot be guaranteed. This is one form
of “DLL Hell” and is a risk with using any DLL installed in a System folder.

Alternative 2. If your application compiles to an EXE file, you can install the
EZTwain DLLs in the same folder as the .EXE. Use an unqualified DLL reference as in
Alternative 1. Under this alternative, your application will always (we believe) load
and use those specific DLLs.

Alternative 3. For dynamic-binding languages like VB and FoxPro, you can use fully
qualified paths for the EZTwain DLL – If you decide to do this, replace all occurrences
of “Eztwain4.DLL” in the definition file with the full path of the DLL .e.g. “c:\Program
Files\Eztwain\Redist\Eztwain4.dll” Under this alternative, your installer must install
the EZTwain DLLs in the same specific folder on every target machine, or must have
a way at run-time to find and load the DLLs.

How To: Obtain a License Key
Redistribution of the EZTwain DLLs is only allowed by the EZTwain Pro License if you
purchase a Universal Redistribution License key. For this key, you provide a vendor
name, and add a call to TWAIN_SetVendorKey in your software. See details under
TWAIN_SetVendorKey in the Function Reference section below. For details and
ordering information, run the Licensing Wizard, or browse to:
 http://www.eztwain.com

Page 12

http://www.dosadi.com/ezt3lic_vendor.htm

EZTwain Pro User Guide

How To: Select a Device for Input

Displaying the Select Source Dialog

You can implement the Select Source command with one EZTwain call:

TWAIN_SelectImageSource(0);

This function displays the TWAIN Select Source dialog, with a list of all the installed
TWAIN Sources on the system:

The user can select the new default TWAIN device or, they can cancel. If they OK
this dialog, TWAIN remembers the new default device.

Note that the Select Source dialog lists Sources (TWAIN drivers), not physical
devices: It will list devices even if they are currently off-line or unplugged. Also, two
devices that use the same driver will only appear once in the TWAIN device list.

Please don’t make the user go through the Select Source dialog each time they want
to acquire!

Page 13

EZTwain Pro User Guide

Enumerating the available sources
If you would like to display your own list of TWAIN Sources, or find out the exact
name of a Source, you can use TWAIN_GetSourceList and
TWAIN_GetNextSourceName. The Code Wizard, installed as part of the EZTwain Pro
toolkit, will generate the code to do this in variety of languages.

Opening a Source by Name
If you would like to acquire from a specific device, you will need to know its exact
name. You can enumerate the names of the installed devices - see above. Then you
can open a specific source this way:

if (TWAIN_OpenSource(“Logitech Camera”) == 1) {
TWAIN_AcquireToFilename(0, “frame.bmp”);

}

This tries to open the named device, and if successful, acquires an image and stores
it in a bmp file. All of the Acquire functions work this way – If a source is open, they
use it, and otherwise they open and use the default source.

Page 14

EZTwain Pro User Guide

How To: Acquire an Image
To acquire a single image from the default TWAIN device, using the device’s user
interface, and store it in a BMP file, call

TWAIN_AcquireToFilename(0, “filename.bmp”)

This makes an excellent test of:
1. Your ability to invoke EZTwain,
2. That EZTwain DLL (Eztwain4.dll) is where your program can find it,
3. TWAIN is correctly installed on the computer, and
4. The default TWAIN device being correctly installed and operational.

A word about the ‘default TWAIN device’ - If there is only one TWAIN device installed
in the system, then that device is the default TWAIN device. Otherwise, it is the last
TWAIN device selected by the user in the Select Source dialog.

To acquire an image into memory:

hdib = TWAIN_Acquire(0);
if (hdib != 0) {

DIB_WriteToFilename(hdib, “last_scan.tif”);
DIB_Free(hdib); hdib = 0;

}

This acquires a single image from the default device, formats it in memory as a DIB,
and returns a handle to it - A handle, not a pointer. Then it writes the DIB out as a
TIFF file, and frees the DIB.

Note that the returned object is a DIB. There is a Windows object commonly called a
Bitmap, short for Device-Dependent Bitmap or DDB – a DIB is not a DDB! A DIB is a
completely different animal.

If something goes wrong with the transfer, the return value will be NULL (0).

The DIB_Free call is needed to release the memory holding the image. If you don’t
do that, the image sits around taking up memory until your program exits.

Page 15

EZTwain Pro User Guide

How To: Negotiate Scanning Parameters
TWAIN requires, reasonably enough, that you must have a Source open before you
can ask it about its settings and properties, called capabilities in TWAIN-speak.

TWAIN also imposes the restriction that settings can only be set while the Source is
open and before it has been enabled. ‘Enabled’ in TWAIN means given the go-ahead
to acquire images.

To cut to the chase, here’s a C fragment for scanning a 1-bit, 300dpi, B&W image:

if (TWAIN_OpenDefaultSource()) {
// DS is now in State 4 (Open)
TWAIN_SetPixelType(TWPT_BW);
TWAIN_SetBitDepth(1);
// (probably redundant for BW)
TWAIN_SetUnits(TWUN_INCHES);
TWAIN_SetResolution(300.0);
hdib = TWAIN_Acquire(0);

}

This code does no error checking on the Set functions, even though some of them
will certainly fail on some devices. For example, almost any webcam will reject a
pixel type of TWPT_BW, and probably a resolution setting of 300 – it might reject
any attempt to set resolution.

It is recommended to select a pixel type first, then to set the bit depth – some
devices maintain bit depths for each pixel type.

Setting the units to inches is a precaution that introduces interesting issues. In
theory, resolution is defined as samples per unit of measure. So when we set a
resolution of 300, we are setting 300 dpi only if the current unit of measure is inches
(dpi = dots per inch, right?) If we are in a metric country – and there’s only one
country that isn’t metric – then the DS might be configured to use centimeters, and
300 would mean 300 samples per centimeter. In practice, TWAIN specifies the
default unit of measure as inches, so almost all Sources open with their units set to
inches. However –some webcams and video capture devices open with units set to
pixels! Technically non-compliant, these devices are likely to reject any attempt to
set their resolution anyway.

Page 16

EZTwain Pro User Guide

How To: Scan a Multipage Document
Multipage files are image files that can hold multiple pages or sequential images.
The multipage file formats supported by EZTwain are TIFF, PDF, and DCX. DCX is
rarely used so we will not mention again.

To scan from the default TWAIN device into a multipage TIFF file takes one call:

TWAIN_AcquireMultipageFile(hwnd, “multipage.tif”);

The first parameter is the window handle of your main window – if you can’t easily
obtain this, just pass a 0 - EZTwain will use the handle of the active window if any,
or it will create an invisible window if there is no active window. The second
parameter is the filename to create - EZTwain uses the extension to select the format
of the file: .TIF, .TIFF, or .MPT means write a TIFF file, .PDF means write a PDF, etc.

TWAIN_AcquireMultipageFile will present the scanner’s user interface, and will accept
scans from the scanner (or images from a camera or webcam) until the user closes
the scan dialog. A few devices will close their window automatically after sending
one image - in some cases EZTwain can detect this and will prompt the user asking if
there are more images. All of this is invisible to your application.

If you do not want to display the device’s user interface, you can use code like the
following. If the default TWAIN device is a scanner with an Automatic Document
Feeder (ADF), this code will scan all the pages in the feeder:

if (TWAIN_OpenDefaultSource()) {
 TWAIN_SetHideUI(1); // ask for no user interface
 TWAIN_SetResolution(300); // ask for 300 DPI
 TWAIN_SetPixelType(TWPT_BW); // black & white
 TWAIN_SelectFeeder(1); // from feeder (if possible)
 TWAIN_EnableDuplex(1); // both sides (if supported)
 TWAIN_AcquireMultipageFile(hwnd, “multipage.tif”);
}
if (TWAIN_LastErrorCode() != 0) {
 TWAIN_ReportLastError(“Error during scanning.”);
}

If the current TWAIN device is a flatbed scanner, this code will immediately scan
from the flatbed, then display a small message box asking if there are more pages to
scan. As long as the user answers ‘Yes’, the TWAIN_AcquireMultipageFile function
will continue to scan another page.

It’s important to specify at least the resolution and pixel type when the scanner user
interface is suppressed, otherwise you have no way of knowing what settings the
scanner will use.

Page 17

EZTwain Pro User Guide

How To: Hide the Source User Interface

In theory
Make the following call before any Acquire calls, and images will arrive from your
device with no distracting dialogs or windows on screen:

TWAIN_SetHideUI(1)

In practice
Some devices will refuse to cooperate and will display their user interface (UI)
anyway. A few particularly bad TWAIN device drivers will crash when used this way.

Even in No-UI mode, many devices will display a status or progress box while
scanning or transferring data. Sometimes the progress box can be suppressed [see
TWAIN_SetIndicators, p. 129.]

If the device is not connected and powered up, if the paper jams, or if anything else
happens that requires human attention, most devices will display an error dialog.
Suppressing such error messages requires low-level Windows programming outside
the scope of TWAIN or EZTwain.

You can count on almost all desktop scanners, departmental scanners, and high-
volume scanners to scan well without showing their UI.

Some webcams will transfer with no UI, for example the Logitech QuickCams.

You cannot count on a digital still camera (DSC) to transfer all its images from
memory in No-UI mode. Last time we checked (2005) most DSCs ignore the request
to hide their UI.

If you must automate a device that insists on displaying its user interface (almost
any webcam, for example) you can try the function TWAIN_AutoClickButton.

Page 18

EZTwain Pro User Guide

How To: Control a Document Feeder (ADF)
Here’s a sample of code to drive a scanner with an automatic document feeder,
suppressing the Source user interface:

if (!TWAIN_OpenDefaultSource()) {
return; // unable to open device?

}
TWAIN_SetHideUI(1); // hide the user interface
TWAIN_SelectFeeder(1); // tell device: ‘use feeder’
TWAIN_SetAutoScan(1); // tell device: ‘scan ahead’
TWAIN_EnableDuplex(1); // tell device: ‘both sides, if you can’
// OK - start scanning
do {

HANDLE hdib = TWAIN_Acquire (0);
if (hdib==0) {

// something went wrong…
break;

}
ProcessThisPage(hdib);
DIB_Free(hdib);

} while (!TWAIN_IsDone());
TWAIN_CloseSource();

Be aware that TWAIN_SelectFeeder can fail on a scanner that looks for all the world
to have a document feeder. One of the biggest players in consumer scanners has
shipped a variety of sheet-feeding models that deny (through TWAIN) having
feeders. The above code fragment will probably drive such devices, even though
both the Feeder-related functions fail.

TWAIN_SetAutoFeed and TWAIN_SetAutoScan can fail, this is harmless. Scanners
that support this feature will scan at full speed when these are set, and scanners that
don’t will still feed pages when Acquire requests them.

Page 19

EZTwain Pro User Guide

How To: Skip Blank Pages
If you are using TWAIN_AcquireMultipageFile, you can skip blank pages by simply
calling

TWAIN_SetBlankPageMode(1)

This tells AcquireMultipageFile to detect and discard blank pages. Use
TWAIN_SetBlankPageThreshold to adjust the threshold for ‘blankness’.

If you are not using AcquireMultipageFile, you will need to call functions to detect
blank pages and handle them in your control flow. Below we have taken a standard
multipage scanning loop in Visual Basic generated by the Code Wizard, and added
code to ignore blank pages:

 Dim fileName As String
 Dim hdib As Long
 fileName = "c:\mydoc.pdf" ‘ Output to PDF
 Call TWAIN_SetHideUI(0) ‘ Hide scanner dialog
 If TWAIN_OpenDefaultSource()=1 Then
 Call TWAIN_SelectFeeder(1) ‘ Pull from ADF
 Call TWAIN_SetXferCount(-1) ‘ All available pages
 Call TWAIN_SetAutoScan(1) ‘ Scan ahead if you can
 Call TWAIN_SetMultiTransfer(1) ‘ Allow multi acquire
 Call TWAIN_BeginMultipageFile(fileName)
 Do
 hdib = TWAIN_Acquire(Me.hwnd)‘ Get next image
 If hdib=0 Then
 Exit Do
 End If
 ‘ We decide that < 2% ‘ink’ coverage means blank.
 ‘ Only write non-blank pages to file:
 If Not DIB_IsBlank(hdib, 0.02) Then
 Call TWAIN_DibWritePage(hdib)
 End If
 ‘ Always remember to free the image from memory:
 Call DIB_Free(hdib)
 Loop While TWAIN_State()>=5
 Call TWAIN_CloseSource()
 Call TWAIN_EndMultipageFile()
 End If
 If TWAIN_LastErrorCode()<>0 Then
 Call TWAIN_ReportLastError("Scan error.")
 End If

Page 20

EZTwain Pro User Guide

How To: Read Patch Codes
We'll need to enable patch code detection, by setting the TWAIN capability
ICAP_PATCHCODEDETECTIONENABLED to TRUE. With the scanner open in EZTwain,
this would be something like:

 TWAIN_SetCapability(ICAP_PATCHCODEDETECTIONENABLED, 1)

or EZTwain.SetCapability(ICAP_PATCHCODEDETECTIONENABLED, 1)

Then we need to tell EZTwain to ask for 'extended image info' after each scan,
specifically the patch code. Something like this:

 TWAIN_EnableExtendedInfo(TWEI_PATCHCODE, 1)
 That 1 may need to be TRUE, True or true, depending on programming language.

After each image is received by using TWAIN_Acquire or similar single-image
scanning function, you can read the patch code that was found, if any, with code
similar to this:

 If TWAIN_ExtendedInfoItemCount(TWEI_PATCHCODE) > 0 Then
 one or more patch codes found - assume only 1 for now!
 patch_code = TWAIN_ExtendedInfoInt(TWEI_PATCHCODE, 0)

According to the TWAIN standard, the returned patch codes are:
TWPCH_PATCH1 1
TWPCH_PATCH2 2
TWPCH_PATCH3 3
TWPCH_PATCH4 4
TWPCH_PATCH6 5 genius...
TWPCH_PATCHT 6

Page 21

EZTwain Pro User Guide

How To: Append to PDF, TIFF & DCX Files
When the function TWAIN_SetFileAppendFlag is called with a non-zero argument, it
tells EZTwain to append to existing PDF, TIFF and DCX files, instead of overwriting
their contents. Example:

TWAIN_SetFileAppendFlag(1);
TWAIN_AcquireMultipageFile(0, “papertrail.pdf”);

This will scan pages from the default TWAIN device, appending them to the file
“papertrail.pdf” until the operator closes the device dialog. The effect of adding the
call to TWAIN_SetFileAppendFlag is that if papertrail.pdf already exists the new
pages are added to it. If papertrail.pdf does not exist, it is created.

The File Append Flag applies to TWAIN_AcquireMultipageFile as above, and to any
other EZTwain function writing a PDF, TIFF or DCX file.

Obscure Exception: This cannot be used with TWAIN_AcquireFile, because with that
function the TWAIN driver writes the file, not EZTwain.

How To: Check for Device On-Line
You can’t! TWAIN added a capability for this rather late in the game, and did a bad
job: Very few TWAIN devices handle this correctly.

Summary: There is no known general way to check if a TWAIN device is on-line.

How To: Do Other Random Stuff
Note: Your syntax may vary. In some languages, TWAIN_function is called as
EZTwain.function, and all other functions and constants may need to be prefixed with
“EZTwain.” Some EZTwain Pro functions accept or return boolean values: Depending
on your language these may be 0 and 1, true and false, TRUE and FALSE, etc.

To turn off the 'auto rotation' feature of certain scanners, such as the Canon network
scanners:

TWAIN_SetCapBool(ICAP_AUTOMATICROTATION, 0)

Page 22

EZTwain Pro User Guide

Function Reference

Functions – Application Name & Licensing
Note: If you installed the EZTwain Pro developer kit on your system, the terms of the
EZTwain License are available under Start – Programs – EZTwain, in License.txt in
the EZTwain folder, and on the web at:
http://www.eztwain.com/EZTwain_Pro_License.pdf

See How To: Obtain a License Key, page 12

TWAIN_SetAppTitle
void TWAIN_SetAppTitle(string Title)

Sets the application title, which is used several ways:

 As the title (caption) of any message boxes displayed by EZTwain.

 By a few Sources, in their progress box e.g. “Transferring image to <app
title>”

 In theory, it could be used by a Source to react specially to an application.

If you call TWAIN_ApplicationLicense, you do not need to call TWAIN_SetAppTitle. If
you do not set the application title at all, the application is given a tacky default title
such as “Application using EZTwain”.

TWAIN_ApplicationLicense
void TWAIN_ApplicationLicense(string pzAppTitle, int nAppKey)

Sets the title of the application (as far as EZTwain is concerned) and unlocks
EZTwain using a Single Application Redistribution Key. It unlocks EZTwain Pro, if the
numeric key (nAppKey) matches the application title. Make sure you use the exact
string used to purchase the license – it is listed with the key in the grant-of-license
e-mail. This should be the first EZTwain call your application makes, other than
TWAIN_LogFile.

TWAIN_SetApplicationKey
void TWAIN_SetApplicationKey(int nAppKey)

Similar to TWAIN_ApplicationLicense above, but called after TWAIN_SetAppTitle or
TWAIN_RegisterApp. It unlocks EZTwain using a Single Application Redistribution
Key, if the key matches the application title you have set.

TWAIN_SetVendorKey
void TWAIN_SetVendorKey(string pzVendorName, int nKey)

Unlocks EZTwain using a Universal Redistribution License key – Sometimes also
called a Vendor License Key. Make sure you use the exact string that was entered

Page 23

http://www.dosadi.com/EZT3_License.pdf

EZTwain Pro User Guide

for ‘Vendor’ on the order – it is listed with the key in the grant-of-license e-mail.
This should be the first EZTwain call your application makes, except for
TWAIN_LogFile.
Use TWAIN_SetAppTitle to tell EZTwain the name of the application.

TWAIN_OrganizationLicense
void TWAIN_OrganizationLicense(string pzOrganization, int nKey)

Unlocks EZTwain using an In-House Application License key – Sometimes also called
an Organization License key. Make sure you use the exact string that was entered
for ‘Organization’ on the order – it is listed with the key in the grant-of-license e-
mail. This should be the first EZTwain call your application makes, except for
TWAIN_LogFile.

Use TWAIN_SetAppTitle to tell EZTwain the name of the application.

Page 24

EZTwain Pro User Guide

TWAIN_SingleMachineLicense
BOOL TWAIN_SingleMachineLicense(string Prompt)

This function is for use in applications that will deployed on a small number of
computers, using the EZTwain Pro Single Machine License – which is a per-machine
license. Call this function when your application starts up, perhaps even during
installation of your application, and it will prompt as needed for a license key on each
machine.

Previously a Single Machine License could only be installed on a computer by first
installing the entire EZTwain Pro Developer Toolkit, then running the EZTwain Pro
Licensing Wizard. This function replaces that procedure, allowing the developer to
build the licensing process into his or her application.

When called, this function checks to see if EZTwain Pro is licensed to run on this
computer at this time.

1. If the running copy of EZTwain is licensed in any way - including a trial license
- this function silently returns TRUE(1) to the caller.

2. If no license is found, this function displays a 'license needed' dialog, with the
Prompt argument at the top of the dialog. If an application title has been set
with TWAIN_SetAppTitle, it is used as the title of the dialog.

The user is told how to obtain a license key and how to enter it. Once a key is
entered and found valid, it is stored on the computer and the function returns
TRUE(1). Note: For this function to accept and store a license key, it must be
running with Administrative privileges.

3. If the user cancels the licensing dialog, this function will normally return
FALSE(0), which means that EZTwain is not licensed to run on the computer.

You can use the Prompt argument to direct users to an in-house support person who
can help resolve licensing problems. For example:

 if (!TWAIN_SingleMachineLicense(“Contact Willy Codewell x8000!”)) {
 exit(255);
 }

If the Prompt string is empty, a default prompt similar to the following is used:

"This application (<apptitle>) uses EZTwain Pro, which requires a valid
numeric License Key."

Page 25

EZTwain Pro User Guide

Functions – Image Acquisition

General Comments

EZTwain is built on a principal of brevity: You should only need to make calls or pass
parameters, where EZTwain cannot reasonably guess what you want.

Advice: When developing, we strongly suggest that you start with a simple call to
TWAIN_AcquireToFilename (if you need a file), TWAIN_AcquireMultipageFile (to scan
a multipage document) or TWAIN_Acquire (if you need an image in memory.) Then
add additional calls one by one to get the exact behavior you ultimately want.

By default, all Acquire functions shut down TWAIN before returning. If you are doing
a series of transfers from the same device, it is much faster to leave the device open
between transfers. You can use a multipage scanning function to do this, or use
TWAIN_SetMultiTransfer (p 34) to keep the device open for multiple transfers.

All Acquire functions load TWAIN and then open and enable the default Source, if
needed. EZTwain goes to great lengths to track the TWAIN State, and will generally
move TWAIN automatically from state to state as needed. For example, if you start
by calling TWAIN_OpenSource, EZTwain makes the necessary calls to transition from
State 1 to State 4. If you then call an Acquire function, EZTwain sees that there is a
Source open, and proceeds with acquisition from that device.

By default, the Acquire functions tell the device to display its user interface. Use
TWAIN_SetHideUI to change this.

Page 26

EZTwain Pro User Guide

Single Image Scanning Functions

TWAIN_AcquireToFilename
int TWAIN_AcquireToFilename(HWND hwndApp, string pszFile)

Acquire an image and save it to a file. If the filename contains a standard extension
(.bmp, .jpg, .jpeg, .tif, .tiff, .png, .pdf, .gif, .dcx) then the file is saved in the implied
format. Otherwise the file is saved in the default save format– see
TWAIN_SetSaveFormat (p 94).

If pszFile is NULL or an empty string, the user is prompted for the file name and
format with a standard Save File dialog. Only available and appropriate formats are
presented in the Save File dialog. In this case if you need to know the filename the
user chose, you can call TWAIN_LastOutputFile (p).

See also TWAIN_Acquire below.

Return values:
 0 success.
 -1 the Acquire failed.
 -2 file open error (invalid path or name, or access denied)
 -3 invalid DIB, or image incompatible with file format, or...
 -4 writing failed, possibly output device is full.
-10 user cancelled File Save dialog

The minimal use of EZTwain is to call this function with null arguments:

ErrCode = TWAIN_AcquireToFilename(0, “”)

TWAIN_Acquire
HANDLE TWAIN_Acquire(HWND hwndApp)

Acquires a single image, from the currently selected Source, using EZTwain's
preferred transfer mode.

The return value is a handle to global memory containing a DIB, a Device-
Independent Bitmap. There are numerous functions to examine, modify, and save
these DIB images. Remember to call DIB_Free on each DIB when you are done with
it!

To acquire an RGB image with 8 bits/channel, you need to do something like this:

TWAIN_SetPixelType(TWPT_RGB);
hdib = TWAIN_Acquire(hwnd)
if (hdib) {

// process image
DIB_Free(hdib);

}

Page 27

EZTwain Pro User Guide

Multi-image Scanning Functions

TWAIN_AcquireMultipageFile
int TWAIN_AcquireMultipageFile(HWND hwndApp, string Filename)

Acquire multiple images into a single output file.

If the filename ends with a recognized extension, the file is written in the implied
format: .TIF/.TIFF/.MPT => TIFF, .DCX => DCX format, and .PDF => PDF.

If the filename has no recognized extension, the file is written in the default
multipage format as set by TWAIN_SetMultipageFormat (p 35).

If Filename is NULL or the empty string, the user will be prompted for the file name.
The only format offered will be the current default multipage format. If you use this
feature, you can call TWAIN_LastOutputFile to obtain the actual filename.

Return values:
 0 success
 -1 the Acquire failed.
 -2 file open error (invalid path or name, or access denied)
 -3 invalid DIB
 -4 writing failed, possibly output device is full.
-10 user cancelled File Save dialog

Other functions that affect this function:
TWAIN_SetHideUI hide or show the scanner's user interface.
TWAIN_SetAutoDeskew automatically deskew each page.
TWAIN_SetBlankPageMode discard blank pages.
TWAIN_SetMultiTransfer leave device open when the function returns.

If TWAIN_SetHideUI is 0 [the default case] then the device UI is shown, and
AcquireMultipageFile will transfer images until the user closes the device dialog.

If SetHideUI is 1, then the device UI is hidden and AcquireMultipageFile will transfer
images until the device indicates that it has no more images available (technically,
until it goes to State 5). Exception: In the case of a device that does not have a
feeder, AcquireMultipageFile will prompt the user after each page, asking if there are
more pages to scan: See TWAIN_PromptToContinue.

TWAIN_BlankDiscardCount returns the number of blank pages discarded by
TWAIN_AcquireMultipageFile.

TWAIN_MultipageCount can be called during or after a multipage acquire: It returns
the number of images written to the most recently created multipage file. See also
TWAIN_AcquireCount just below.

If you want to set scanning parameters (resolution, pixeltype...) first open the source
(see OpenDefaultSource or OpenSource) then negotiate the settings using the
capability functions, and then call AcquireMultipageFile.

Page 28

EZTwain Pro User Guide

TWAIN_AcquireToArray
int TWAIN_AcquireToArray(HWND hwnd, HDIB ahdib[], int nMax)

Scan and store images in an array.
Very similar to TWAIN_AcquireMultipageFile, see that function for more details.
A return value of N >= 0 means N images were scanned and stored without error.
(N=0 if the job ended without error after 0 pages.)
Any unused entries in the array are set to 0 (NULL)
In case of error, returns a negative value and any scanned images are discarded.

Page 29

EZTwain Pro User Guide

TWAIN_AcquireImagesToFiles
int TWAIN_AcquireImagesToFiles(HWND hwndApp, string Filename)

Similar to TWAIN_AcquireMultipageFile above, but writes each image to a separate
file.

If the filename is NULL or points to the empty string, the user is prompted for the
name of the first file using a standard Save dialog.

As with TWAIN_AcquireToFilename, if the filename contains a standard extension
(.bmp, .jpg, .jpeg, .tif, .tiff, .png, .pdf, .gif, .dcx) then the file is saved in the implied
format. Otherwise the file is saved in the default save format– see
TWAIN_SetSaveFormat (p 94).

Auto-numbering

The first image acquired is written to the specified filename. Subsequent filenames
are auto-numbered according to this algorithm:

1. If the previous filename, excluding extension, does not end in one or more
digits, then it is treated as if it ended with '0'.

2. If the previous name, excluding extension, ends in a sequence of d digits
specifying the number n, then the next filename is created by replacing the
sequence of digits with a sequence of digits representing the number n+1,
padded with leading 0's to make it at least d digits long.

Examples
Filename (1st File) 2nd File 3rd File

Document.tif Document1.tif Document2.tif

Page98.jpg Page99.jpg Page100.jpg

Invoice00001.pdf Invoice00002.pdf Invoice00003.pdf

Return values from TWAIN_AcquireImagesToFiles
≥0 The number of files written.

This could be 0 if the scanner dialog is displayed and the user closes
the dialog without any scans, or if blank pages are being discarded and
all of the scanned pages are (classified as) blank.

<0 An error. The codes are the same as TWAIN_AcquireMultipageFile.

For more detailed error information, use TWAIN_ReportLastError,
TWAIN_LastErrorCode, etc.

See also TWAIN_AcquireCount and TWAIN_BlankDiscardCount.

Page 30

EZTwain Pro User Guide

TWAIN_AcquirePagesToFiles
int TWAIN_AcquirePagesToFiles(HWND hwnd, int nPPF, string sFile)

Like AcquireImagesToFiles, but can handle duplex scanning and multipage files.
See Controlling Duplex Mode.

hwnd = parent window. Use 0 (NULL) if you can't obtain the window handle.

nPPF = physical pages per file.
If the scanner is scanning single-sided (simplex) then each file will receive
nPPF images. If the scanner is scanning duplex, the number of images
written into each file will be 2 x nPPF. The result is that each file represents
nPPF pieces of paper, whether you are scanning duplex, or simplex.

sFile = name of first file.
We recommend including the extension to specify the format.
If the filename is NULL or points to the empty string, the user is prompted for
the name of the first file.
Files are auto-numbered, see TWAIN_AcquireImagesToFiles above.

Return value: Same as TWAIN_AcquireImagesToFiles.

Example: Assume you want to load a batch of 2-page single-sided forms into your
ADF-equipped scanner and turn them into individual PDF files. Following the code
needed to open and configure the scanner for paper size, pixel type, resolution,
duplex(off) and so on, the actual scan can be performed by:

TWAIN_AcquirePagesToFiles(hwnd, 2, “form0001.pdf”)

This will scan 2 pages at a time until the feeder runs empty, writing the first two
pages into form0001.pdf, the next two pages into form0002.pdf, and so on.

If you later need to scan forms that are printed on both sides - and assuming your
scanner can scan duplex - you would insert a line to select duplex mode before
starting the scan:

TWAIN_EnableDuplex(TRUE)
TWAIN_AcquirePagesToFiles(hwnd, 2, “form0001.pdf”)

The AcquirePages function adapts correctly, scanning 2 pages at a time, which now
produces 4 images (front, back, front, back), and collecting each 2-page form into a
sequentially numbered PDF file, as before.

If you condense your original 2-page single-sided forms onto 1 double-sided page,
then you have to change the number of pages per file:

TWAIN_EnableDuplex(TRUE)
TWAIN_AcquirePagesToFiles(hwnd, 1, “form0001.pdf”)

This takes each 1-page form in the feeder, scans both sides, and writes a
corresponding PDF file containing the front and back image.

Page 31

EZTwain Pro User Guide

TWAIN_AcquireCount
int TWAIN_AcquireCount()

Returns the number of images received from the scanner during the most recent
multipage Acquire function (such as TWAIN_AcquireMultipageFile).

TWAIN_BlankDiscardCount
int TWAIN_BlankDiscardCount()

Returns the number of pages discarded as blank during the most recent multipage
Acquire function. See TWAIN_SetBlankPageMode (p 36).

TWAIN_PromptToContinue
BOOL TWAIN_PromptToContinue(HWND hwnd)

Prompt the user asking if they want to continue scanning.
Return TRUE(1) if user responds affirmatively, FALSE(0) if not.

If the parameter is a valid Windows window-handle, that window is used as the
parent of the prompt message box, otherwise the foreground window of the current
task/process is used.

If you have called TWAIN_SetScanAnotherPagePrompt with a (non-empty) string,
that string is used as the prompt message.

Otherwise, a standard prompt is used:
The prompt is automatically translated based on thread locale, which defaults to
application locale, which defaults to user locale, which defaults to system locale.

Languages: Danish, Dutch, English, French, German, Italian,
Norwegian, Polish, Portuguese, Spanish, Swedish.

TWAIN_SetScanAnotherPagePrompt
TWAIN_SetScanAnotherPagePrompt(string pzPrompt)

Sets the prompt message for the "Scan another page?" prompt.
See TWAIN_PromptToContinue above. This prompt is also used by all the multipage
Acquire functions in certain circumstances.

Page 32

EZTwain Pro User Guide

TWAIN_AcquireFile
int TWAIN_AcquireFile(HWND hwndApp, int nFF, string pszFile)

Acquire one image and write it to a file using TWAIN File Transfer Mode. This is an
exotic transfer mode, not supported by all TWAIN devices. Do not use this function
unless you have a specific reason and understand the consequences. If you just
want to scan one image or page to a file, use TWAIN_AcquireToFilename.

Warning: File Transfer Mode is not supported by all TWAIN devices, and
when it is supported, often BMP is the only supported file format.

You can open a Source and then use TWAIN_SupportsFileXfer to see if the DS
supports File Transfer Mode.

You can use TWAIN_Get(ICAP_IMAGEFILEFORMAT) to get an enumeration of the
available file formats, and CONTAINER_ContainsValue to check for a particular
format you are interested in. See Appendix 2 - Working with Containers, p 161.

nFF can be any file format supported by the DS, see the TWFF_* constants in twain.h
for the list of allowed formats. A compliant DS should at least support TWFF_BMP,
but as usual there are no guarantees.

If pszFile is NULL or an empty string, the user is prompted for the file name in a
standard Save File dialog. If you use this feature, you can call
TWAIN_LastOutputFile to obtain the actual filename.

Return values (Note, this is not an error code like AcquireToFilename!)
TRUE(1) for success
FALSE(0) for failure

Use GetResultCode/GetConditionCode for details.
If the user cancels the Save File dialog, the result code will be TWRC_CANCEL

Page 33

EZTwain Pro User Guide

Functions – Global Modes & Queries

TWAIN_EasyVersion
int TWAIN_EasyVersion()

Returns the version number of EZTwain Eztwain4.dll, multiplied by 100.
So e.g. 416 as a return value means EZTwain Version 4.16

TWAIN_IsAvailable
int TWAIN_IsAvailable()

Call this function any time to find out if TWAIN is installed on the system. It takes a
little time on the first call, after that it's extremely fast. It returns 1 if the TWAIN
Source Manager is installed and can be loaded, 0 otherwise.

TWAIN_SetHideUI / TWAIN_GetHideUI
TWAIN_SetHideUI(int fHide)
int TWAIN_GetHideUI()

These functions control the 'hide source user interface' flag. This flag is initially
FALSE(0), but if you set it non-zero, then when a source is enabled it will be asked to
hide its user interface. Note this is a request - some sources will ignore it.
See: How To: Hide the Datasource User Interface.
If the user interface is hidden, you will probably want to set at least some of the
basic acquisition parameters yourself – see Negotiating Scanning Parameters . See
also: HasControllableUI

TWAIN_SetMultiTransfer / TWAIN_GetMultiTransfer
TWAIN_SetMultiTransfer(int fYes)
int TWAIN_GetMultiTransfer()

These functions query and set the 'multiple transfers' flag.
By default, the multi-transfer flag is FALSE(0). This means that EZTwain closes
down TWAIN after each image transfer (TWAIN_AcquireXXX).

If the multi-transfer flag is non-zero: After an Acquire, the Source is left open and
enabled to allow additional images to be acquired in the same session. The
programmer may need to close the Source after all images have been transferred, for
example by calling TWAIN_CloseSource or TWAIN_UnloadSourceManager

See How To: Transfer Multiple Images

Page 34

EZTwain Pro User Guide

TWAIN_DisableParent / TWAIN_GetDisableParent
void TWAIN_DisableParent(int fYes)
int TWAIN_GetDisableParent (void)

Disable the parent window during all TWAIN_Acquire functions.
(The parent window is the window you pass to the Acquire function. Typically this is
your main application window or dialog.) By default this setting is TRUE - the parent
window, if you pass it in, is disabled during an Acquire.

Note 1: If you set this to FALSE, your window can receive user input while an Acquire
is in progress, and your code must be prepared for this.
Note 2: Some TWAIN Sources will disable the parent window on their own, and
EZTwain cannot prevent this.

TWAIN_SetMultipageFormat
TWAIN_GetMultipageFormat
int TWAIN_SetMultipageFormat(int nFF)
int TWAIN_GetMultipageFormat()

Select/query the default multipage file save format, the file format used to write
multipage files when the file format cannot be inferred from the file extension.

If you use a recognized extension in the name of your multipage file - such as .tif,
.tiff, .mpt, .pdf or .dcx, then the file will be written in the implied format. The file
extension overrides SetMultipageFormat.

The default when EZTwain is loaded is MULTIPAGE_TIFF.

Multipage format values:
0 MULTIPAGE_TIFF
1 MULTIPAGE_PDF
2 MULTIPAGE_DCX

SetMultipageFormat returns:
0 success,

-1 invalid/unrecognized format (bad parameter value)
-3 format is currently unavailable (missing/bad DLL)
-7 Multipage support is not installed.

Page 35

EZTwain Pro User Guide

Functions – Post-Processing
Post-processing is the industry term for everything you do to an image after it has
been scanned or captured, before you store it or pass it on.

TWAIN_SetAutoCrop/TWAIN_GetAutoCrop
TWAIN_SetAutoCrop(int nMode)
int TWAIN_GetAutoCrop()

Select the auto-crop mode.
Auto-crop mode attempts to crop off very dark areas on the outside of each incoming
image during scanning. The available auto-crop modes are:

0 no auto crop.
1 auto crop using software algorithm

TWAIN_SetAutoContrast/TWAIN_GetAutoContrast
TWAIN_SetAutoContrast(int nMode)
int TWAIN_GetAutoContrast()

Select the auto-contrast mode.
Auto-contrast mode attempts to automatically improve the contrast of each incoming
image during scanning. It works best on text documents. See DIB_AutoContrast for
more details. The available auto-contrast modes are:

0 no auto contrast.
1 auto contrast using software algorithm

TWAIN_SetAutoDeskew/TWAIN_GetAutoDeskew
TWAIN_SetAutoDeskew(int nMode)
int TWAIN_GetAutoDeskew()

Select the 'auto-deskew' mode.
Auto-deskew attempts to straighten up scans that are slightly crooked, up to about
±10 degrees. The available auto-deskew modes are:

0 no auto deskew.
1 enable scanner deskew (ICAP_AUTOMATICDESKEW) if supported;

if not supported by scanner, deskew in software.

TWAIN_SetBlankPageMode / TWAIN_GetBlankPageMode
TWAIN_SetBlankPageMode(int nMode)
int TWAIN_GetBlankPageMode()

Set or get the Skip Blank Pages mode. When this mode is 1, blank pages are
automatically discarded by TWAIN_AcquireMultipageFile.
When this mode is 0 (the default), EZTwain does not look for blank pages or treat
them in any special way.
See TWAIN_SetBlankPageThreshold (below) for more details.

Page 36

EZTwain Pro User Guide

TWAIN_SetBlankPageThreshold /
TWAIN_GetBlankPageThreshold
TWAIN_SetBlankPageThreshold(double dDarkness)
double TWAIN_GetBlankPageThreshold()

Set or get the blank page threshold, which affects the operation of Skip Blank Pages
mode. The blank page threshold is a number between 0 and 1.0. If the number of
‘dark’ pixels on a page divided by the total number of pixels on the page is less than
this threshold, the page is considered ‘blank’.

The initial blank page threshold is: 0.02 (= 2% dark pixels).

See DIB_IsBlank (p 64) and DIB_Darkness (p 64) for more details about the
algorithm for computing ‘dark’ pixels.

TWAIN_SetAutoOCR / TWAIN_GetAutoOCR
TWAIN_SetAutoOCR(int nMode)
int TWAIN_GetAutoOCR()

Sets or gets the auto-OCR mode. By default this mode is OFF(0). When this mode
is on(1), EZTwain applies OCR, if available, to each incoming scanned page or image
and temporarily stores the result. Also in this mode, if you scan directly to PDF
format using TWAIN_AcquireToFilename or TWAIN_AcquireMultipageFile, the OCR'd
text is written invisibly to each PDF page, to facilitate indexing and searching. If you
are scanning individual pages you can call OCR_Text or OCR_GetText to retrieve the
text found on the last scanned page.

The currently selected OCR engine is used: See OCR_SelectEngine and related
functions. Caution: If OCR fails for some reason in auto-OCR mode, an error is
recorded (see TWAIN_LastErrorCode, TWAIN_ReportLastError) but the scanning
function may report success.

TWAIN_SetAutoNegate/TWAIN_GetAutoNegate
TWAIN_SetAutoNegate(BOOL bYes)
BOOL TWAIN_GetAutoNegate()

Controls the 'auto-negate' mode. Unlike most post-processing modes, this mode is
on by default.
Auto-negate mode analyzes each incoming B&W (1-bit/pixel) image during scanning.
If the image is more than 80% black, it is ‘negated’ - black and white are reversed.
A surprising number of scanners incorrectly deliver negative images under certain
circumstances, and this mode compensates for that.

The available auto-negate modes are:
0 no auto negate.
1 auto negate (default)

Page 37

EZTwain Pro User Guide

Source (Device/Driver) Selection

TWAIN_SelectImageSource
int TWAIN_SelectImageSource(HWND hwnd)

This function posts the Source Manager's Select Source dialog box, which allows the
user to see and possibly change the default TWAIN device for their computer. Note:
If only one TWAIN device is installed on a system, it is selected automatically, so
there is no need for the user to do Select Source. You should not require your users
to do Select Source before Acquire.

Note that this dialog is displayed by the TWAIN Source Manager, not by EZTwain,
and we have no direct control over its size, location, layout, etc. If you want a
different UI, you can create your own using the functions below.

It usually works well to pass a 0 to this function: EZTwain then finds and refers to
the ‘Foreground Window’, and the Select Source dialog acts as a modal child of that
window. If for some reason that isn’t what you want, you’ll need to pass another
valid HWND (Windows window-handle) to this function.

Returns TRUE(1) if the user OK’d a selection, FALSE(0) if:
 a) The user cancelled the dialog
 b) The Source Manager found no Sources installed
 c) There was a failure before the Select Source dialog could be posted

To enumerate the available Sources, see the following two functions.

TWAIN_GetSourceList
int TWAIN_GetSourceList(void)

Fetches the list of sources into memory, so they can be returned one by one by
TWAIN_GetNextSourceName, below.
Returns TRUE (1) if successful (at least one Source was found), FALSE (0) otherwise.

TWAIN_GetNextSourceName/TWAIN_NextSourceName
int TWAIN_GetNextSourceName(LPSTR pzName)
string TWAIN_NextSourceName()

TWAIN_GetNextSourceName copies the next source name in the list into pzName –
up to 32 characters (ANSI) plus a terminating NUL (0 byte).
Returns TRUE (1) if successful, FALSE (0) if there are no more.

TWAIN_NextSourceName returns the next source name as a string. This function is
not available in some languages. If there is no next source name, this function
returns the empty string.

Page 38

EZTwain Pro User Guide

TWAIN_GetDefaultSourceName
TWAIN_DefaultSourceName
int TWAIN_GetDefaultSourceName(LPSTR pzName)
string TWAIN_DefaultSourceName()

TWAIN defines the 'default source' as a per-user or system-wide TWAIN setting: It is
the default TWAIN device, similar to the Windows default printer. Like the default
printer, most applications that have an Acquire or Scan command will use the current
default source. However, some applications maintain their own private source
device, independent of the TWAIN default source.

Until TWAIN 2.2, the default source could only be selected by the user, using the
TWAIN Select Source dialog (see TWAIN_SelectImageSource.)

TWAIN_GetDefaultSourceName copies the name of the TWAIN default source into
pzName. Up to 32 ANSI characters plus a terminating NUL (0 byte) are returned.
Normally returns TRUE (1) but will return FALSE (0) if:

- the TWAIN Source Manager cannot be loaded & initialized or
- there is no current default source (e.g. no sources are installed)

DefaultSourceName returns the name of the TWAIN default source as a string. This
function is not available in certain languages. If there is no default TWAIN source
(see above) this function returns the empty string.

TWAIN_SourceName
char* TWAIN_SourceName(void)

Returns the name of the currently or last opened source, as a string. C/C++
developers: Note that this is always an 8-bit ASCII string.

See TWAIN_DefaultSourceName, to obtain the name of the default TWAIN device.

TWAIN_GetSourceName
void TWAIN_GetSourceName(LPSTR pzName)

Like TWAIN_SourceName, but copies the name string into its argument. Please
allocate enough space: 64 char at least.

Page 39

EZTwain Pro User Guide

Functions – Extended Image Information
Extended Image Information was introduced in TWAIN 1.7 – It provides a way for a
scanner to offer advanced image processing services, and send the results to a
receptive application with each scanned image. For example, some higher-end
scanners can detect barcode symbols or automatically deskew pages. Using this
feature, an application can find out what barcodes were found on each incoming
page, and the amount of skew that was corrected.

The EZTwain model of this feature is fairly simple. As part of configuring for a scan,
the application uses TWAIN_EnableExtendedInfo to specify which type of extended
information should be collected. Each type of information is represented by a
numeric constant defined in the TWAIN standard, such as TWEI_BARCODETEXT or
TWEI_SKEWORIGINALANGLE. After an image is received, using TWAIN_Acquire for
example, we provide functions to count and read the collected information.

We have included the necessary TWEI_ constants in our declaration files, but for
explanation and details you should contact us (www.eztwain.com) or visit the TWAIN
website (www.twain.org) to obtain a copy of the TWAIN Standard.

TWAIN_IsExtendedInfoSupported
BOOL TWAIN_IsExtendedInfoSupported()

Asks the currently open device if it can generate Extended Image Info.
Returns TRUE(1) if yes, FALSE(0) if not. This will fail and record an error if no
TWAIN device is currently open through EZTwain.

TWAIN_EnableExtendedInfo
BOOL TWAIN_EnableExtendedInfo(long eiCode, BOOL enabled)

Enable or disable collection of the specified kind of extended image info.
Each type of information is represented by an integer constant with prefix TWEI_ -
see the EZTwain declaration file for your language. This function returns TRUE.

TWAIN_IsExtendedInfoEnable
BOOL TWAIN_IsExtendedInfoEnabled(long eiCode)

Return TRUE(1) if the specified extended image info is enabled.

TWAIN_DisableExtendedInfo
void TWAIN_DisableExtendedInfo()

Disables all extended image info – calling this function stops collection of extended
image information.

Page 40

http://www.twain.org/
http://www.dosadi.com/

EZTwain Pro User Guide

Reading Extended Information

You can think of the extended image information as returning an array of 0 or more
values for each enabled TWEI_ code. TWAIN_ExtendedInfoItemCount tells you how
many values were returned for a given TWEI_ code. When you ask for a value, you
always have to specify both the TWEI_ code and a value index. The value index is
overkill in almost all cases: You will commonly specify an index of 0, meaning the
first available value.

Remember: All of these functions refer to information collected from the last scan.

TWAIN_ExtendedInfoItemCount
long TWAIN_ExtendedInfoItemCount(long tweiCode)

The number of values available of the given info (TWEI_) type.

TWAIN_ExtendedInfoItemType
long TWAIN_ExtendedInfoItemType(long tweiCode)

Returns a number indicating the type of data returned for the specified extended
info, using the same TWTY_ codes as CONTAINER_ItemType (see page 162).

TWAIN_ExtendedInfoInt
long TWAIN_ExtendedInfoInt(long tweiCode, long n)

Returns the integer value of the 'nth' item of the specified extended info.

TWAIN_ExtendedInfoFloat
double TWAIN_ExtendedInfoFloat(long tweiCode, long n)

Returns the (floating point) value of the 'nth' item of the specified extended info.

TWAIN_GetExtendedInfoString
BOOL TWAIN_GetExtendedInfoString(long tweiCode, long n, LPSTR
Buffer, long Bufsize)

Read the string value of the nth item of the specified info into Buffer, which has been
allocated by the caller to hold Bufsize characters.
Note that the value returned is ASCII (byte) text, not unicode, and always
includes an ending 0 byte, even if it must be truncated to fit.
Returns TRUE if the data was retrieved and could fit in the buffer, FALSE otherwise.

In all languages, the caller must ensure that the 3rd parameter (Buffer) has been
allocated as a block of characters (bytes) and that the address of the first byte of the
allocated buffer is passed to the function. In classic VB for example, this requires

Page 41

EZTwain Pro User Guide

passing the first buffer element by reference. Contact Technical Support if you have
questions about this.

TWAIN_ExtendedInfoString
string TWAIN_ExtendedInfoString(long tweiCode, long n)

As above, but the string is returned as a temporary pointer to a 0-terminated ASCII
string. In case of any failure, returns the empty string ("").

If your programming language has strings that are natively UNICODE, this function,
if available at all, will return a native string and the comments above about
ASCII/byte text do not apply: The string is converted to native format when it is
returned from the function.

TWAIN_GetExtendedInfoFrame
BOOL TWAIN_GetExtendedInfoFrame(

long tweiCode, long n,
double *L, double *T, double *R, double *B)

Fetch the TW_FRAME value of the 'nth' item of the specified extended info. A frame
is a TWAIN concept usually used to represent a rectangle – left, top, right, bottom.
This is rarely used, but is here for completeness.

Page 42

EZTwain Pro User Guide

Functions – DIBs & Image Processing

Creating and Freeing DIBs

DIB_Allocate
HANDLE DIB_Allocate(int nDepth, int nWidth, int nHeight)

Create a DIB with the given dimensions. Resolution is set to 0. A default grayscale
table is provided if depth <= 8. The image data is uninitialized i.e. garbage.

DIB_Create
HANDLE DIB_Create(int nType, int nWidth, int nHeight, int nDepth)

Create a DIB with the given pixel type, dimensions, and depth. See Pixel Types,
page 44. If a depth of 0 is given, the default depth for the given pixel type is used.
Resolution is set to 0. If the pixel type calls for a color table (TWPT_BW,
TWPT_GRAY, or TWPT_PALETTE) a default color table is provided. The image data is
uninitialized.

DIB_Copy
HANDLE DIB_Copy(HANDLE hdib)

Create and return a byte-for-byte copy of a DIB.

DIB_Free
void DIB_Free(HANDLE hdib)

Release the storage of the DIB.
Note: If hdib is NULL (0), it does nothing.

DIB_FreeArray
void DIB_FreeArray(??, int n)

Calls DIB_Free on the first n entries of a DIB handle array.

Page 43

EZTwain Pro User Guide

Querying DIB Properties

DIB_Width
int DIB_Width (HANDLE hdib)

Width of DIB, in pixels (columns)

DIB_Height
int DIB_Height (HANDLE hdib)

Height of DIB, in lines (rows)

DIB_PixelType
int DIB_PixelType(HANDLE hdib)

Returns a Pixel Type code that describes the format of the DIB’s pixels.

EZTwain Pixel Types

Symbol Code Description
TWPT_BW 0 1-bit per pixel, black and white
TWPT_GRAY 1 grayscale, normally 8 but can be 4- or 16-bit
TWPT_RGB 2 RGB color, 24-bit (can also be 48-bit, and rarely 15,

16, or 32-bit)
TWPT_PALETTE 3 indexed color (image has a color table) 8 or 4-bit.
TWPT_CMY 4 CMY color, 24-bit
TWPT_CMYK 5 CMYK color, 32-bit

DIB_Depth / DIB_BitsPerPixel
int DIB_Depth (HANDLE hdib)
int DIB_BitsPerPixel (HANDLE hdib)

Number of bits per pixel.

DIB_SamplesPerPixel
int DIB_SamplesPerPixel(HANDLE hdib)

Number of samples (components or color channels) in each pixel.
B&W and gray pixels have 1 sample, RGB and CMY have 3.
CMYK has 4. Palette-color images are treated as having 3 channels.

DIB_BitsPerSample
int DIB_BitsPerSample(HANDLE hdib)

Number of bits per sample (channel, component) in each pixel.

For B&W and grayscale images, this is the same as the bits per pixel, because those
formats have one sample per pixel.

Page 44

EZTwain Pro User Guide

For palette images, this will be 8, because the color values in a palette image are
stored with 8 bits each for R, G, and B.

For RGB, CMY, and CMYK images, this function returns the number of bits used to
represent each color channel or component - almost always 8, but EZTwain does
have a limited ability to handle images that are 5-bit and 16-bit per channel.

DIB_XResolution / DIB_YResolution
double DIB_XResolution(HANDLE hdib)
double DIB_YResolution (HANDLE hdib)

Horizontal (x) or vertical (y) resolution of DIB in DPI (dots per inch)

DIB_PhysicalWidth / DIB_PhysicalHeight
double DIB_PhysicalWidth(HDIB hdib, int nUnits)
double DIB_PhysicalHeight(HDIB hdib, int nUnits)

Return the width(height), in the specified units, of the given image, calculated using
its pixel width(height) and X(Y) resolution. If the resolution is 0, these return 0.

nUnits is one of the TWUN_ values - see page 122 - 0=inches, 1=cm, etc.

DIB_IsCompressed
BOOL DIB_IsCompressed(HDIB hdib)

TRUE(1) if the DIB's image data is compressed in memory, FALSE(0) otherwise.
Compressed DIBs are only produced by an operation where you specifically request
or enable creation of compressed DIBs.

DIB_Compression
int DIB_Compression(HANDLE hdib)

Returns a code specifying the type of compression used on a DIB's image data.
Uses the same codes as TWAIN_SetCompression.
TWCP_NONE means 'no compression' – the common case.

DIB_RowBytes
size_t DIB_RowBytes(HANDLE hdib)

Number of bytes needed to store one row of the DIB.

DIB_Size
int DIB_Size(HANDLE hdib)

The number of bytes of memory occupied by the DIB – header plus image data.

Page 45

EZTwain Pro User Guide

DIB_ColorCount
int DIB_ColorCount(HANDLE hdib)

Number of colors in color table of DIB.

DIB_ColorTableR / DIB_ColorTableG / DIB_ColorTableB
int DIB_ColorTableR(HANDLE hdib, int i)
int DIB_ColorTableG(HANDLE hdib, int i)
int DIB_ColorTableB(HANDLE hdib, int i)

Return the R,G, or B component of the ith color table entry of a DIB.
If i < 0 or >= DIB_ColorCount(hdib), returns 0.

Setting DIB Properties

DIB_SetResolution/DIB_SetResolutionInt
void DIB_SetResolution(HANDLE hdib, double xdpi, double ydpi)
void DIB_SetResolutionInt(HANDLE hdib, int xdpi, int ydpi)

Sets the horizontal or vertical resolution of the DIB. The ‘Int’ form is for languages
that cannot easily pass double (64-bit floating point) parameters.

DIB_SetGrayColorTable
void DIB_SetGrayColorTable(HANDLE hdib)

Fill the DIB's color table with a gray ramp - so color 0 is black, and the last color
(largest pixel value) is white. No effect if depth > 8. The DIB must already have a
color table allocated.

DIB_SetColorTableRGB
void DIB_SetColorTableRGB(HANDLE hdib, int i, int R, int G, int
B)

Set the ith entry in the DIB's color table to the specified color. R G and B range from
0 to 255.

Page 46

EZTwain Pro User Guide

Reading and Writing DIB Data

DIB_ReadRow
DIB_ReadRowRGB
DIB_ReadRowGray
DIB_ReadRowChannel
void DIB_ReadRow(HANDLE hdib, int r, BYTE* prow)
void DIB_ReadRowRGB(HANDLE hdib, int r, BYTE* prow)
void DIB_ReadRowGray(HANDLE hdib, int r, BYTE *prow)
void DIB_ReadRowChannel(HANDLE hdib, int r, BYTE *prow, int c)

Read row r of the given DIB into buffer at prow.
Row 0 is the top row of the image, as it would be displayed.

DIB_ReadRow reads the raw row data from the DIB, including BGR pixels from 24-bit
DIBs, 1-bit, 4-bit or 8-bit, 16-bit, or even 48-bit pixels.
DIB_ReadRowRGB converts each pixel into the nearest equivalent 3-byte RGB pixel.
DIB_ReadRowGray converts every pixel to an 8-bit grayscale or “brightness” value.
DIB_ReadRowChannel extracts the 8-bit channel or component of each pixel, as
described in Component Codes, page 64

The caller is responsible for making sure there is enough room in the buffer (pointed
to or referenced by the prow parameter.) Buffer sizes required are as follows:

Function Bytes of buffer per row
DIB_ReadRow DIB_RowBytes(hdib)
DIB_ReadRowRGB 3*DIB_Width(hdib)
DIB_ReadRowGray DIB_Width(hdib)
DIB_ReadRowChannel DIB_Width(hdib)

DIB_ReadData
void DIB_ReadData(HANDLE hdib, BYTE* pdata, int nbMax)

Read the entire DIB, including header, into a buffer. The 2nd parameter is the
address (pointer to) the buffer. The 3rd parameter is the maximum number of bytes
to read – which is usually the size of the buffer in bytes.

The number of bytes needed to hold the entire DIB is returned by DIB_Size.

DIB_WriteRow
void DIB_WriteRow(HANDLE hdib, int r, const BYTE* pdata)

Write data from buffer into row r of the given DIB.
Caller is responsible for ensuring that the buffer and row exist, etc.

Page 47

EZTwain Pro User Guide

DIB_WriteRowChannel
void DIB_WriteRowChannel(HANDLE hdib, int r, const BYTE* pdata,
int nChannel)

Write data from buffer into one color channel of row r of the given image.
When writing a 24-bit RGB image, valid channels are: 1=Red, 2=Green, 3=Blue.
When writing to a 32-bit RGBA image, channel 4=alpha.
When writing to an 8-bit gray image, channel 0 = gray.
When writing to a 24-bit CMY or 32-bit CMYK image, 1=Cyan, 2=Magenta, 3=Yellow,
4=blacK.
This function should not be used on any other image format.

Drawing (Rendering) DIBs

DIB_DrawOnWindow
void DIB_DrawOnWindow(HANDLE hdib, HWND hwnd)

Draws the DIB on the window.

The image is scaled to just fit inside the (client area of the) window, while keeping
the correct aspect ratio. Any part of the window not covered by the image is left
untouched, so will normally be filled with the window’s background color.

DIB_DrawToDC
void DIB_DrawToDC(HANDLE hdib, // DIB handle

HDC hDC, // destination device context
int dx, int dy,// destination (x,y)
int w, int h, // width and height
int sx, int sy // source (x,y) in DIB
)

Draws the DIB on the device context. Before using this call, you should have some
understanding of the Windows GDI and Device Contexts.

Page 48

EZTwain Pro User Guide

Converting between DIB and other image formats

Microsoft, never content to offer one solution when it can offer two (or more), has
over the years created at least five widely-used classes of image object:

1. The Device-Independent Bitmap or DIB.

EZTwain Pro uses this format internally, representing each image as a global
handle to a block of memory containing a DIB header immediately followed by
the pixel data. DIBs can store a wide variety of image formats, and retain
resolution (DPI) information. In native Windows API programming, the DIB is the
standard general-purpose image format, although it is usually referenced using
pointers rather than a global handle.

2. The Device-Dependent Bitmap, DDB, or HBITMAP.

Often simply called a ‘bitmap’, and referenced in the Windows API by a handle
called an HBITMAP, a DDB has a device-dependent pixel format (although
actually the 1-bit format is standardized) and can only be manipulated by the
video device driver that created it. DDBs do not store resolution (DPI)
information. It is not generally meaningful to save a DDB to a file.

Today, DDBs are only useful in two contexts: They are still the easiest way to
embed fixed graphics as resources into a Windows program in C/C++. And if you
need the absolute maximum speed, they are probably the fastest way to move
pixels to and from the display.

EZTwain can convert from DDB (HBITMAP) to DIB with DIB_FromBitmap.

3. The DibSection

This is a strange hybrid object, an HBITMAP that wraps a DIB. Many languages
and imaging classes (such as GDI+, .NET Image, Delphi TBitmap) do not easily
accept DIBs but readily accept a DIBSection as an HBITMAP.

EZTwain can convert a DIB to a DibSection with DIB_ToDibSection. Use this
function when you need an HBITMAP. Note: DIB_ToDibSection frees the DIB.

4. The Picture/IPicture/OLE Picture object.

This is a COM object wrapper for an image - it can wrap either a bitmap or a
Windows Metafile (WMF). VB supports this format as the Picture type - when
calling EZTwain from VB, you can use DIB_ToPicture and DIB_FromPicture.

5. The Image class

The .NET framework introduced the Image class. When using EZTwain from
VB.NET, you can use the function DIB_ToImage.

Page 49

EZTwain Pro User Guide

DIB_ToDibSection
HBITMAP DIB_ToDibSection(HANDLE hdib)

Convert the given DIB into a kind of bitmap called a DIBSection, which is a special
kind of Windows native bitmap. The returned HBITMAP (bitmap handle) can be used
with many Windows functions and controls. Many class libraries (such as .NET
Image and Delphi TBitmap) also prefer this kind of bitmap.

Note: The input DIB is freed and can no longer be accessed or used.

DIB_FromBitmap
HANDLE DIB_FromBitmap(HBITMAP hbm, HDC hdc)

Reverse of DIB_ToDibSection: Converts a device-dependent bitmap into a DIB
(Device-Independent Bitmap). If successful, the input bitmap is deleted.

Most programmers can pass 0 (NULL) for the HDC argument. The HDC (handle to
device context) should only be used if you understand GDI programming and know
that the HDC is compatible with the HBITMAP and contains useful color palette
information. If the incoming HBITMAP is a DIBSection (for example from
DIB_ToDibSection) the HDC is never needed and can always be 0.

DIB_ToImage/DibToImage
Function DIB_ToImage(ByVal hdib As System.IntPtr) As Image
Function DibToImage(ByVal hdib As System.IntPtr) As Image

Converts a DIB into a .NET Image object and returns it. Note that with this function,
the input DIB is not freed - your code must free the DIB when you are done with it.

Page 50

EZTwain Pro User Guide

Converting between DIBs and VB Pictures

Visual Basic has a type called variously a Picture, StdPicture, or IPicture – which can
be used alone, or in conjunction with the PictureBox control, whose Picture property
holds a Picture object. EZTwain prefers to work with and store images as DIBs, so
the following functions allow conversion between DIBs and VB Pictures.

Warning: VB’s Picture objects do not retain resolution (DPI) – or we have not found
the secret that makes it work. The resolution is what determines the implied
physical (printed) size of an image, so if you need this information, you will have to
somehow restore it when you convert from Picture to DIB. See p. 46 –
DIB_SetResolution. We recommend not converting Pictures back to DIBs.

Note: The Picture type is replaced in .NET by the Image class, so these functions are
not available in .NET languages - See DIB_ToImage.

The EZTwain Developer Kit contains a non-trivial sample application called VBTwerp
written for VB 5.0, which demonstrates use of these and many other EZTwain
functions.

DIB_ToPicture
Picture DIB_ToPicture(HANDLE hdib)

Reformat the given DIB into a Picture. Note: This frees the input DIB – it can no
longer be accessed or used.

A Picture object can be assigned to the Picture property of a PictureBox on a form,
causing the picture to be displayed. Discussion of the PictureBox control is beyond
the scope of this document – see the VB documentation, and many Web resources.
If you have a form frmMain containing a PictureBox named ScannedPic, this
statement will scan an image and display it:

 Dim hdib As Long
 hdib = TWAIN_Acquire(frmMain.hwnd)
 If hdib <> 0 Then
 Set ScannedPic.Picture = DIB_ToPicture(hdib)
 End If

DIB_FromPicture
HANDLE DIB_FromPicture(Picture pic)

Create a DIB (Device-Independent Bitmap) from a Picture. The Picture itself is
unchanged. This only works if the Picture contains a bitmap – not an icon or
metafile.

Page 51

EZTwain Pro User Guide

Drawing Text into DIBs

DIB_DrawText
void DIB_DrawText(HANDLE hdib, const char *pzText, int x, int y,
int w, int h)

Draw text into the specified DIB image, inside the specified rectangle. All the
coordinates are in pixels. The y-coordinate is measured down from the top, so (0,0)
is the upper-left corner of the image. A width or height of -1 means ‘as much as
needed’. When you first use this function, we recommend using w = h = –1.

The text color, typeface, character height, rotation angle and format can be set with
the functions below. The default text settings are:

Normal (plain) style
flush left, push to top
character height: 14 pixels
rotation angle: 0 degrees (horizontal)
color: black
font: Arial

Example:
DIB_SetTextColor(255, 0, 0);
DIB_SetTextFormat(EZT_TEXT_RIGHT+EZT_TEXT_BOTTOM);
DIB_DrawText(hdib, “Captured 2003.07.08 11:52”, 0, 0,-1,-1);

This will draw the annotation in the bottom-right corner of the image in bright red.

Note: Anisotropic images

When drawing text into an image that has different DPI in X and Y, such as a digital
fax file, the text height is reinterpreted as a physical height relative to the higher DPI
value. In other words, if you set text height=25 and draw text into an image with
200 DPI horizontal and 96 DPI vertical, the text height is interpreted as 25/200 =
0.125 inches, and text is drawn correctly proportioned to be 0.125 in. high no matter
how it is oriented. In this example, horizontal text would be drawn 25 pixels high
and would print out 0.125 inches high. Text drawn sideways (angles of 90 or 270)
will be drawn in the image 0.125 * 96 = 12 pixels high, which causes it to print and
display at 12/96 = 0.125 inches high, the same as horizontal text.

DIB_SetTextHeight
void DIB_SetTextHeight(int nH)

Set the character height in pixels (image rows) for subsequent calls to
DIB_DrawText. If you need to set the text height in physical units (inches) convert
as follows:

nH = round_to_nearest_integer(HeightInInches * DIB_Yresolution(hdib))

Page 52

EZTwain Pro User Guide

DIB_SetTextColor
void DIB_SetTextColor(int R, int G, int B)

Set the text color for subsequent calls to DIB_DrawText.

DIB_SetTextAngle
void DIB_SetTextAngle(int nDegrees)

Set the text orientation for subsequent calls to DIB_DrawText, in degrees of rotation
clockwise from horizontal. Only multiples of 90 degrees are supported. Negative
values (representing counter-clockwise rotation) are accepted.

DIB_SetTextFace
void DIB_SetTextFace(const char *pzFace)

Set the text typeface (text font) for subsequent calls to DIB_DrawText. Default is
“Arial”. The fonts that are absolutely universal on Windows (including 95 and NT):

Arial
Courier New
Lucida Console
MS Sans Serif
Times New Roman
Symbol: ΑΒΧ∆ΕΦΓ
WingDings:

A machine that has Internet Explorer installed will have additional fonts:
Arial Black
Comic Sans MS
Georgia
Impact
Trebuchet MS
Verdana

Page 53

EZTwain Pro User Guide

DIB_SetTextFormat
void DIB_SetTextFormat(int nFlags)

Sets the alignment and formatting of text for for subsequent calls to DIB_DrawText.
These format attributes can be added or OR’ed together:

SetTextFormat Flags

Named Constant Value Meaning / Effect
EZT_TEXT_NORMAL 0x0000 ‘plain’ text style, like this
EZT_TEXT_BOLD 0x0001 bold
EZT_TEXT_ITALIC 0x0002 italic
EZT_TEXT_UNDERLINE 0x0004 underlined
EZT_TEXT_STRIKEOUT 0x0008 strikeout
EZT_TEXT_BOTTOM 0x0100 Align bottom of text to bottom of rectangle
EZT_TEXT_VCENTER 0x0200 Center text vertically within rectangle
EZT_TEXT_TOP 0x0000 Align top of text to top of rectangle
EZT_TEXT_LEFT 0x0000 Align text to the left side
EZT_TEXT_CENTER 0x1000 Center text between left and right sides
EZT_TEXT_RIGHT 0x2000 Align text to the right side
EZT_TEXT_JUSTIFY 0x0800 Stretch text out to left and right sides
EZT_TEXT_WRAP 0x4000 Break lines that are too wide to fit

Page 54

EZTwain Pro User Guide

DIB Transformations & Drawing

DIB_DrawLine
void DIB_DrawLine(HDIB hdib, // DIB to draw into

int x1, int y1, // starting point
int x2, int y2, // ending point
int R, int G, int B) // color

Draw a straight line in an image (DIB) from the starting point to the ending point,
using the nearest available match to the specified color. R, G, B are interpreted as
8-bit red/green/blue values 0..255. The coordinates are in pixels, with (0,0) being
the upper-left corner of the image. If hdib is a B&W, grayscale, or palette image, the
mathematically nearest representable color to (R,G,B) is used.

DIB_Fill
void DIB_Fill(HANDLE hdib, int R, int G, int B)

Fill all the pixels of the DIB with the specified color. R, G, B are interpreted as 8-bit
red/green/blue values 0..255. If hdib is a B&W, grayscale, or palette image, the
mathematically nearest representable color to (R,G,B) is used.

DIB_Negate
void DIB_Negate(HANDLE hdib)

Negates all the pixels in the DIB. Note that the color table if any is left untouched –
this call will not have the desired effect on an indexed-color image.

DIB_AdjustBC
void DIB_AdjustBC(HDIB hdib, int nB, int nC)

Adjust the brightness and/or contrast of the image.
nB and nC are -1000 to 1000, with a value of 0 meaning 'no change'.
Positive nB pushes all pixels toward white, negative toward black.
Positive nC pushes all pixels away from mid-value, toward black and white.
Negative nC pushes all pixels toward the mid-value.
Works on grayscale, RGB, CMY(K) images - no effect on B&W and palette.

DIB_FlipVertical
void DIB_FlipVertical(HANDLE hdib)

Flips the image in the y-direction – turns it upside down.

DIB_FlipHorizontal
void DIB_FlipHorizontal(HANDLE hdib)

Flips the image in the x-direction – mirror-images it.

Page 55

EZTwain Pro User Guide

DIB_Rotate180
void DIB_Rotate180(HANDLE hdib)

Turns the image 180°.

DIB_Rotate90
HANDLE DIB_Rotate90(HANDLE hOld, int nSteps)

Return a copy of hOld rotated clockwise nSteps * 90°. If nSteps is 0, the result is a
copy of hOld. Negative values of nSteps rotate counterclockwise. Note that hOld is
not destroyed so you need to DIB_Free it if you are done with it.

Page 56

EZTwain Pro User Guide

DIB Scaling, Resampling & Format Conversion

DIB_ScaledCopy
HANDLE DIB_ScaledCopy(HANDLE hOld, int w, int h)

Create and return a copy of hOld scaled (resampled) to have width w and height h.
This only works on 24-bit color and 8-bit grayscale images, other input will cause the
function to fail and return NULL. Don't forget to DIB_Free the old DIB when you are
done with it. This operation is sometimes called resampling because you have the
same image, but with a different number of samples of its color values.

DIB_Resample
HDIB DIB_Resample(HDIB hOld, double xdpi, double ydpi)

Return a new image that is a copy of the old image, but resampled to the specified
resolution. Resampling is the technical term for recomputing the pixels of an image,
when you want to change the number of pixels in the image but not the physical size
(like 8.5" x 11").

If you resample from 300DPI to 100DPI, you will have 1/3 as many rows, 1/3 as
many columns, 1/9 as many pixels - but the pixels will be marked in the image as
being 3 times as 'wide' and 'tall' - so the physical size of the image stays the same.
This is the same as DIB_ScaledCopy (above), just looked at in a different way.

DIB_Resample will fail if the input image has either resolution <= 0, or if xdpi or
ydpi is <= 0. It can also fail from insufficient memory.

Remember to DIB_Free the old DIB when you are done with it.

DIB_Thumbnail
HANDLE DIB_Thumbnail(HANDLE hdib, int MaxWidth, int MaxHeight)

Return an image (Dib) containing a copy of hdib, scaled so that its width is no more
than MaxWidth, and height is no more than MaxHeight. Can accept any image
produced by EZTwain. B&W images are converted to grayscale thumbnails.
Remember to DIB_Free the original image and the thumbnail, when you are done
using them.

DIB_SimpleThreshold
HDIB DIB_SimpleThreshold(HDIB hdib, int nT)

Returns a B&W copy of the given image using the given threshold. The gray value
(0..255) of each input pixel is calculated: If the value < nT that pixel is black (0) in
the returned image, if the value >= nT the pixel becomes white in the returned
image. Remember to DIB_Free each image when you are done using it.

Page 57

EZTwain Pro User Guide

DIB_SmartThreshold
HDIB DIB_SmartThreshold(HDIB hdib)

Returns a B&W copy of the given image, using a ‘smart’ thresholding algorithm. This
function examines the entire image and chooses a threshold value that is ‘optimal’ in
some sense, for text and line-art. Remember to DIB_Free each image when you are
done using it.

DIB_ConvertToPixelType
HANDLE DIB_ConvertToPixelType(HANDLE hdib, int nPT)

Takes a DIB handle and a pixel-type code (see Pixel Types, p 4) and returns a copy
of the input DIB, converted into the specified pixel type. The input DIB is not
affected, and must be freed with DIB_Free when no longer needed.

This function can be used to expand B&W images into grayscale, to convert between
RGB and CMY or CMYK formats, to convert color scans to grayscale, grayscale to
B&W, and so forth.

When converting to B&W, the image is thresholded using a ‘smart threshold’ - see
DIB_SmartThreshold above. When converting a color image to TWPT_PALETTE, an
optimized color table is computed, and the image is rendered into that set of colors
with a ‘random dither’ technically known as error diffusion.

DIB_ConvertToFormat
HANDLE DIB_ConvertToFormat(HDIB hOld, int nPT, int nBPP)

Create and return a new DIB containing the hOld image converted to the specified
pixel type and bits per pixel. Similar DIB_ConvertToPixelType but allows for non-
standard depth in the output, such as 4-bit/pixel grayscale, or 16-bit/sample RGB.
Unsupported and impossible combinations cause a NULL return.

DIB_ScaleToGray
HANDLE DIB_ScaleToGray(HDIB hdibOld, int r)

Create and return a new grayscale DIB by averaging each r x r pixel square of
hdibOld to create each output pixel. The output image has 1/r times the width and
height, and resolution, of the input image. Works well to convert B&W images to
lower-resolution grayscale images, which are not as ‘crisp’ but are smoother, look
better when scaled, and can be JPEG-compressed.

Page 58

EZTwain Pro User Guide

DIB Block Copy and Masking

DIB_RegionCopy
HANDLE DIB_RegionCopy(HANDLE hOld, int x, int y, int w, int h,
int fill)

Create and return a new DIB that is a copy of a rectangular region of hOld. The
copied region is w pixels wide, h pixels high, starting at (x, y) in the hOld image,
where (0,0) is the upper-left corner of hOld, visually. Pixels that don't fit into the
new DIB are discarded. If the new DIB is taller or wider than the old, the new pixels
on the right and bottom are filled with bytes = fill. Common values for fill are:

-1 (or 255 or 0xFF) fills with 1's producing white
0  which produces black fill.

This function is useful for cropping or extending an image.

DIB_Blt
void DIB_Blt(

HANDLE hdibDst, // DIB destination
int dx, int dy, // destination (x,y)
HANDLE hdibSrc, // DIB source
int sx, int sy, // where to start in source
int w, int h, // width and height
unsigned uRop) // operation to apply

Copy pixels from hdibSrc into hdibDst, starting at (dx,dy) in the destination, and
(sx,sy) in the source, and transferring a rectangular region w columns by h rows.
Any pixels that fall outside the actual bounds of the source and destination DIBs are
ignored. Put another way, the coordinates and sizes are clipped to boundaries of the
actual DIBs. The operations available are:

EZT_ROP_COPY 0
EZT_ROP_OR 1
EZT_ROP_AND 2
EZT_ROP_XOR 3

DIB_BltMask
void DIB_BltMask(

HANDLE hdibDst, // DIB destination
int dx, int dy, // destination (x,y)
HANDLE hdibSrc, // DIB source
int sx, int sy, // where to start in source
int w, int h, // width and height
unsigned uRop, // operation to apply (see note below)
HANDLE hdibMask) // the ‘mask’

Like DIB_Blt, but hdibMask contains an 8-bit mask. hdibMask must be the same size
as hdibSrc, and must be 8-bits per pixel. For each pixel of the affected region, if D is
the destination pixel, S is the source, and M is the mask:

D = (M / 255) * S + (1 – M / 255) * D

Page 59

EZTwain Pro User Guide

So a mask value of 255 (usually white) causes the source pixel to replace the old
destination value, a mask value of 0 leaves the destination value unchanged, and in
between the source and destination are blended according to the mask value.

Note: Currently only EZT_ROP_COPY is supported for the uRop parameter.

DIB_PaintMask
void DIB_PaintMask(

HANDLE hdibDst, // DIB destination
int dx, int dy, // starting destination (x,y)
int R, int G, int B, // color to paint with
int sx, int sy, // starting mask (x,y)
int w, int h, // width and height
unsigned uRop, // operation to apply (see note below)
HANDLE hdibMask) // the ‘mask’

Like DIB_BltMask, but applies a solid color. hdibMask must be 8-bits deep. For each
pixel of the affected region, if D is the destination pixel value, P is the paint color,
and M is the mask:

D = (M / 255) * P + (1 – M / 255) * D

A destination pixel D is only affected if it exists in hdibDst, falls within the rectangle
specified by (dx, dy, w, h), and if the corresponding mask pixel exists in hdibMask.
A width value (w) of –1 is interpreted as ‘as wide as possible’, similarly for height
(h). If you paint into a grayscale DIB, the paint color is converted to a gray value if
necessary. If you paint into a B&W DIB, the paint color is converted to gray, then to
whichever is closest: black, or white.

Note: Currently only EZT_ROP_COPY is supported for the uRop parameter.

Page 60

EZTwain Pro User Guide

Working with a DIB through a DC

DIB_OpenInDC
int DIB_OpenInDC(HANDLE hdib, HDC hdc)

Create a temporary copy of the DIB and select it into the specified DC (Device
Context). Allows use of any GDI function to draw through the DC into the image.
The drawing actually takes place in a temporary bitmap called a DIBSection, the
result are only copied back into your hdib when you call DIB_CloseInDC – see below.

Only one DIB can be open this way at a time: You cannot nest DIB_OpenInDC.
A second call to DIB_OpenInDC without an intervening DIB_CloseInDC will display an
error message and return –4.

Return values:

 0 Success
-1 Could not lock the hdib – probably not a valid handle
-2 CreateDIBSection failed: hdc is invalid, hdib is not a DIB handle, or insufficient

memory.
-3 Unable to select the DIBSection into the hdc (Unknown cause)
-4 Nested call – two calls to OpenInDC without a call to CloseInDC.

DIB_CloseInDC
void DIB_CloseInDC(HANDLE hdib, HDC hdc)

Call this function exactly once for each call to DIB_OpenInDC. It has no effect at any
other time. Copies the image from the DC back into the DIB and detaches it from
the DC. Example:

 // This draws a disc of reversed color in the upper-left corner of the
 // image (hdib), using the GDI ‘Ellipse’ function in exclusive-OR mode.
 HDC hdc = CreateCompatibleDC(NULL);
 if (hdc) {
 if (0==DIB_OpenInDC(hdib, hdc)) {
 SetROP2(hdc, R2_XORPEN); // set ‘exclusive-or’ mode
 Ellipse(hdc, 4, 4, 132, 132); // Draw a filled circle
 DIB_CloseInDC(hdib, hdc);
 }
 DeleteDC(hdc);
 }

Page 61

EZTwain Pro User Guide

DIBs: Automatic Image Improvement

DIB_AutoCrop
HANDLE DIB_AutoCrop(HDIB hOld, int nOptions)

Return a copy of the image in hOld, with the surrounding border of uniform color (if
there is one) cropped off. Of course this will normally change the dimensions of the
image - the pixel type and depth are not changed.
After this call, remember to DIB_Free(hOld) if you don't need it.
nOptions is currently unused and must be 0 (zero).

DIB_GetCropRect
BOOL DIB_GetCropRect(HDIB hdib, int nOptions,

 int *x, int *y, int *w, int *h)

Returns a suggested crop rectangle to remove blank or unused border from the
image. The returned rectangle is defined by an upper-left point and a width and
height, in pixels. (Precisely the arguments needed by DIB_RegionCopy.) As usual, y
and h are measured down from the top of the image.

nOptions is currently unused and must be 0.

DIB_AutoCrop uses this function to decide what to crop.

A return of FALSE means no crop rectangle was found - generally this means that the
image has content that extends to the edges, or has no definite borders of dark
color. For convenience, when this function returns FALSE it sets x, y, w and h to
specify the entire image.

DIB_AutoDeskew
HANDLE DIB_AutoDeskew(HANDLE hOld, int nOptions)

Returns a copy of the image in hOld, possibly 'deskewed'.
If it can be determined that the input image is consistently skewed (rotated by a
small angle) then the returned image is rotated to eliminate that skew.
After this call, remember to DIB_Free(hOld) if you don't need it.
The depth and pixel type of the image are not changed.
The dimensions of the returned image may be slightly changed.
nOptions is currently unused and must be 0 (zero).

DIB_DeskewAngle
double DIB_DeskewAngle(HANDLE hdib)

Compute and return the small clockwise rotation that would best deskew (vertically
align) the given image. The returned angle is in radians, which may be negative or
positive. Only rotations in the range ±4° are considered. A value < -9.0 means that

Page 62

EZTwain Pro User Guide

an optimal rotation could not be determined. A deskew angle in the range ±0.001
can probably be ignored - the image is already nearly perfectly upright.

DIB_AutoContrast
int DIB_AutoContrast(HANDLE hdib)

Automatically adjust the brightness and contrast of an image to ‘improve’ it. For
bimodal images, where the original material appears to be ‘perceptually black and
white’, this function will adjust the brightness and contrast to make the dominant
light color into white, and the primary dark tone into black. For other images, this
function evaluates whether the images is using the available tonal range, and if not
attempts to adjust brightness and contrast to expand the image’s tonal range.
DIB_AutoContrast has no effect on B&W images.

DIB_MedianFilter
void DIB_MedianFilter(HDIB hdib, int W, int H, int nStyle)

Apply a median filter to an image using an W x H neighborhood.
The parameter nStyle is currently ignored, but should be 0 for future compatibility.

The median filter is effective at removing speckle noise from color and grayscale
images, because it smooths out pixels that differ radically in value from their
neighbors.

Page 63

EZTwain Pro User Guide

DIBs: Image Analysis

DIB_IsBlank
BOOL DIB_IsBlank(HDIB hdib, double dDarkness)

Return TRUE(1) if the DIB has less than dDarkness fraction of 'dark' pixels, FALSE(0)
otherwise. A typical value of dDarkness would be 0.02 which means 2% dark pixels.
A page with less than 2% dark pixels is probably blank.
See How To: Skip Blank Pages, p 20.

DIB_Darkness
double DIB_Darkness(HDIB hdibFull)

Returns the fraction of an image that consists of 'dark' pixels i.e. pixels that would be
black if the image was converted to B&W using a smart thresholding. (See
DIB_SmartThreshold p. 57 for more details.) A return of 0.0 means none, 1.0 means
all. A typical office document is 0.02 (2%) to 0.32 (32%) dark pixels. This function
is used by DIB_IsBlank to decide if an image is blank.

DIB_GetHistogram
void DIB_GetHistogram(HANDLE hdib, int nComp, int nHisto[256])

This function computes a histogram of the given DIB. The third parameter must be
an array of 256 integers (32-bit or 64-bit depending on whether you are using the
x86 or x64 version of EZTwain) – it need not be initialized, it is output-only. When
DIB_GetHistogram returns, each entry nHisto[v] contains the number of pixels in
hdib that have a value of v in the specified component. This function works on B&W,
grayscale, RGB, and Palette images.

Component/Channel Codes

Symbol C Description
COMPONENT_GRAY 0 Grayscale equivalent or lightness
COMPONENT_RED 1 Red component / red channel
COMPONENT_GREEN 2 Green component
COMPONENT_BLUE 3 Blue component
COMPONENT_SAT 4 Saturation (as in HSB color model)
COMPONENT_HUE 5 Hue (as in HSB/HSV/HSL color models)
COMPONENT_LUMINANCE 0 synonym for COMPONENT_GRAY

DIB_Avg/DIB_AvgRegion/DIB_AvgRow/DIB_AvgColumn
double DIB_Avg(HDIB hdib, int nComp)
double DIB_AvgRegion(HDIB hdib,int nComp,int x,y,w,h)
double DIB_AvgRow(HDIB hdib, int nComp, int y)
double DIB_AvgColumn(HDIB hdib, int nComp, int x)

Average the values of pixels in an image, region, row or column, and return the
resulting value between 0 and 255.

Page 64

EZTwain Pro User Guide

Note that row 0 (y=0) is the visually top-most row of an image.
Averages either intensity (brightness) or individual color channels.
See component codes above, for DIB_GetHistogram.
All image formats are normalized so that white = 255.0 and black = 0, even for 1-bit
B&W or 16-bit grayscale or color images.

DIB_ComponentCopy
HDIB DIB_ComponentCopy(HDIB hdib, int nComponent)

Extract and return an image containing one component (channel) of the input image.
See component codes under DIB_Histogram.
The returned image is an 8-bit grayscale image containing the specified channel of
the input image, with the same width, height, and DPI as the input image.

Caution: Future versions may return a 16-bit deep image if given a 16 bit/channel
input image.

Page 65

EZTwain Pro User Guide

DIBs: Miscellaneous

DIB_SetColorCount
void DIB_SetColorCount(HANDLE hdib, int n)

DIB_SwapRedBlue
void DIB_SwapRedBlue(HANDLE hdib)

For 24-bit DIB only, exchange R and B components of each pixel.

DIB_CreatePalette
HPALETTE DIB_CreatePalette (HANDLE hdib)

Create and return a logical palette to be used for drawing the DIB.
For 1, 4, and 8-bit DIBs the palette contains the DIB color table.
For 24-bit DIBs, a default halftone palette is returned.

DIB_Lock
BITMAPINFOHEADER* DIB_Lock(HANDLE hdib)

Lock the given DIB handle and return a pointer to the header structure. Technically,
increments the lock count of hdib and returns its address.

DIB_Unlock
void DIB_Unlock(HANDLE hdib)

Unlock the given DIB handle (decrement the lock count.)
When the number of Unlocks = the number of Locks, any pointers into the DIB
should be presumed invalid.

Page 66

EZTwain Pro User Guide

DIBs: Clipboard Functions

DIB_PutOnClipboard
int DIB_PutOnClipboard(HANDLE hdib)

Place the DIB on the clipboard (format CF_DIB.)
Important: After this call, the clipboard owns the DIB and you do not - you should
set your copy of the DIB handle to NULL (0) and attempt no further operations on
that DIB. Treat this call just as you would a call to DIB_Free.
Returns 1 = success, 0 = failure.

DIB_CanGetFromClipboard
BOOL DIB_CanGetFromClipboard(void)

Return 1 if there is something on the clipboard that can be delivered as a DIB (by
DIB_GetFromClipboard below.) Returns 0 if not. If you are implementing ‘paste’,
call this function to enable and disable the Paste command.

DIB_GetFromClipboard
DIB_FromClipboard
HANDLE DIB_GetFromClipboard(void)
HANDLE DIB_FromClipboard(void)

Create and return a DIB with the contents of the clipboard.
Used to implement a Paste function for images. Returns NULL in case of error, or if
no image on clipboard. See DIB_CanGetFromClipboard above.

Page 67

EZTwain Pro User Guide

Functions – Printing

Configuration

DIB_SpecifyPrinter
int DIB_SpecifyPrinter(string pzPrinterName)

Specify the printer to be used when printing to the ‘default printer’, as in
DIB_PrintNoPrompt below. In other words, this overrides the user’s default printer
choice.
Calling this function with NULL or an empty string tells EZTwain to return to using
the system default printer as the default printer.

DIB_EnumeratePrinters
int DIB_EnumeratePrinters()

Enumerate the available printers and return the count of printers found. A return
value < 0 indicates some serious internal error. After this call, use DIB_PrinterName
or DIB_GetPrinterName (below) to get the names of the available printers. This call
can take several seconds - possibly more on some versions of Windows, depending
on whether there are remote printers in the list.

DIB_PrinterName / DIB_GetPrinterName
char* DIB_PrinterName(int i)
int DIB_GetPrinterName(int i, LPSTR PrinterName)

Get the name of the ith available printer. DIB_PrinterName returns the name as a
string. DIB_GetPrinterName copies it into the specified character array (string
buffer). In most languages, you will need to allocate and/or initialize the string
variable to be 256 characters.

DIB_SetPrintToFit / DIB_GetPrintToFit
void DIB_SetPrintToFit(int nYes)
int DIB_GetPrintToFit()

Get or set the print-to-fit flag.
When the print-to-fit flag is non-zero, EZTwain reduces the size of printed images to
fit within the printer page. This only affects images that are too large to fit on the
page. By default, this flag is FALSE (0)

Page 68

EZTwain Pro User Guide

Single-Page Printing

DIB_Print
int DIB_Print(HANDLE hdib, string pzJobname)

Display the standard Print dialog, and if OK’d by user, print the DIB on the user-
selected printer. By default, prints the DIB at 'physical size' - the DIB resolution
values are used to convert the width and height from pixels to physical units (e.g.
inches.) If the DIB has resolution values of 0, 72 DPI is assumed. However, if the
print-to-fit flag is set (see DIB_SetPrintToFit above) any image too large to print on
the printer page is scaled smaller until it fits. The image is always printed centered
on the page.

The 2nd parameter is a string that appears in the print queue; If it is NULL or the
empty string, the application title is used (See TWAIN_SetAppTitle.)

DIB_PrintNoPrompt
int DIB_PrintNoPrompt(HANDLE hdib, string pzJobname)

Like DIB_Print, but does not prompt the user. The image is printed on the default
printer with default print settings.

Multipage Printing from a File

DIB_PrintFile (alias TWAIN_PrintFile)
int DIB_PrintFile(string file, string jobname, BOOL bNoPrompt)
int TWAIN_PrintFile(string file, string jobname, BOOL bNoPrompt)

Print the specified file with the specified job name.
If the filename is null or empty, the user is prompted to select a file.
If the jobname is null or empty, the actual filename is used as the jobname.
If bNoPrompt is non-zero (True) the job is sent to the default printer.
If bNoPrompt is zero (False) the user is prompted with the standard Print dialog.
Return values:

0 success
-1 user cancelled Open File dialog
-2 could not open/access printer
-3 error reading from file
-4 printing output error

-10 user cancelled Print dialog

Page 69

EZTwain Pro User Guide

Multipage Printing – DIBs

If you don't have your images in a file, you can print multipage documents from
memory using these functions. DIB_PrintArray prints an array of images as a single
print job. Or you can compose a print job yourself: Call DIB_PrintJobBegin to start
the job, call DIB_PrintPage with each page image and call DIB_PrintJobEnd when
done. Try to always call DIB_PrintJobEnd, even in event of an error: Otherwise
various things are left in an undesirable state.

DIB_PrintArray
int DIB_PrintArray(HDIB hdibs[], int nCount,

 string Jobname, BOOL bNoPrompt)

Prints the first nCount images in the hdibs array, under the given print-job name.
If the job-name parameter is NULL or the empty string, the application title is used.
If bNoPrompt is TRUE(non-zero), the print job is sent directly to the default printer.
If bNoPrompt is FALSE(0), the user is prompted with the standard print dialog.
Return value is same as DIB_Print (above).

DIB_PrintJobBegin
int DIB_PrintJobBegin(string pzJobname, BOOL bUseDefaultPrinter)

Begins a multipage print job. Jobname is the name of the print job: This appears in
the print queue , and in some environments it is printed on a job-separator page
ahead of the job. If Jobname is null or empty, the application title is used. (See
TWAIN_SetAppTitle)

If bUseDefaultPrinter is non-zero (true) the default printer is used, otherwise the
user is prompted to select the printer. If a print job is open, DIB_PrintJobEnd() is
called to close it. Return values:

0 success
-2 could not open/access printer
-4 printing output error

-10 user cancelled Print dialog

DIB_PrintPage
int DIB_PrintPage(HDIB hdib)

Print a page as part of the current job. See DIB_Print for more details.
Return values:

0 success
-3 the DIB is null or invalid
-4 printing output error
-5 no print job is open

DIB_PrintJobEnd
int DIB_PrintJobEnd(void)
End the current print job and release it for printing.
(Some environments will start printing as soon as the first page is available.)

Page 70

EZTwain Pro User Guide

Return values:
0 success

-4 printing output error
-5 no print job is open

Page 71

EZTwain Pro User Guide

Functions – Barcode Recognition

Introduction
EZTwain barcode recognition is based on a multi-engine architecture with a specific
set of supported engines in each release. You can enumerate the supported or
available engines, select an engine, and use that engine to search scanned or loaded
images for barcodes.

Some barcode jargon you may encounter:

A symbology is a style of barcode, such as Code 128, defined by a set of rules for bar
widths, heights, clearance, character encoding, and error detection/correction.

A symbol is what the rest of the world calls 'a barcode'. This can be confusing – in
barcode talk, a symbol is an entire barcode. Also called a patch, although that tends
to be used more for 2D barcodes.

The general paradigm for analyzing barcodes in a scanned or loaded image is this:

1. To enumerate the defined engines, call BARCODE_EngineName(i) for i = 1,
2, ... until it returns the empty string.

2. Select the desired engine using BARCODE_SelectEngine. Note also
BARCODE_IsEngineAvailable.

3. Select the possible orientations for that should be searched for barcodes,
using BARCODE_SetDirectionFlags.

4. You can use BARCODE_ReadableCodes to determine which barcode types are
recognizable by the selected engine.

5. If you know the approximate location of your barcodes, you can improve
speed and avoid 'false positives' (finding barcodes you don't want to find) by
setting a recognition zone with BARCODE_SetZone.

6. Call BARCODE_Recognize, passing it the handle of the image to search, the
maximum number of barcode patches to find, and a mask of the barcode
types (symbologies) to look for. If this function finds any barcodes, it returns
a positive integer = the count of symbols (barcodes) found.

7. If n barcodes were found, use BARCODE_Text, BARCODE_Type,
BARCODE_GetRect, and BARCODE_GetText or BARCODE_Text to obtain
details about each barcode, passing in an index from 0 to n-1.

If you would like to learn more about the theory and practice of barcoding, we
recommend The Bar Code Book by Roger C. Palmer (available through Amazon.com).
There are also some helpful links on our website, at
http://www.eztwain.com/barcode.htm

Page 72

http://www.dosadi.com/barcode.htm

EZTwain Pro User Guide

Supported Barcode Engines
As of version 3.48, EZTwain Pro supports five barcode engines. Contact Technical
Support if you are interested in using another barcode engine.

1. EZTwain Native Barcode Engine

A very limited built-in barcode engine which recognizes only horizontal and vertical
3-of-9 symbols. This engine is selected by default.

For more advanced barcode recognition, EZTwain can detect and use the following
third party barcode engines, which must be licensed from their respective vendors.

2. LEADTOOLS Linear 1D Symbols Engine

http://www.leadtools.com/SDK/Document/Document-Addon-Barcodelinear1D.htm

The LeadTools engine seems to be the fastest and one of the most accurate, handles
slanted (skewed) barcodes well, and is relatively expensive. You must license the
LeadTools Raster Imaging SDK as well as the Linear 1D Barcode SDK, plus purchase
a run-time license for each machine that will use barcode recognition. Check the
website above for the latest information.

The following files are required when using LeadTools 15 barcode recognition:

Ltkrn15u.dll Ltbar15u.dll Ltdis15u.dll
Ltimgcor15u.dll Ltimgutl15u.dll Ltbar415u.dll

For LeadTools 16, looks like you need (at least)

Ltkrnu.dll Ltbaru.dll Ltdisu.dll
Ltimgcoru.dll Ltimgutlu.dll Ltbar4u.dll

Note: All Unicode versions of LEADTOOLS require Microsoft Unicode Layer for Windows
(UNICOWS.DLL) in order to function on Windows 95/98/Me. You can obtain MSUL
from: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/anch_mslu.asp.

Note: LEADTOOLS Requires the following Microsoft C/C++ Runtime files to be distributed in
the application's PATH:

Win32 Platforms: x64 Platforms:
msvcr80.dll
msvcp80.dll
Microsoft.VC80.CRT.manifest
mfc80u.dll
Microsoft.VC80.MFC.manifest
MFC80ENU.dll
Microsoft.VC80.MFCLOC.manifest

msvcr80.dll
msvcp80.dll
Microsoft.VC80.CRT.manifest
mfc80u.dll
Microsoft.VC80.MFC.manifest
MFC80ENU.dll
Microsoft.VC80.MFCLOC.manifest

NOTE: that the filenames are the same for Win32 and x64. However, the actual

Page 73

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/anch_mslu.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/anch_mslu.asp
http://www.leadtools.com/SDK/Document/Document-Addon-Barcodelinear1D.htm

EZTwain Pro User Guide

binares are different. For more information about distributing the Microsoft C/C++
runtime files, refer to:
http://msdn2.microsoft.com/en-us/library/ms235291.aspx

The Microsoft C Runtime business is quite a mess, see for example:

http://www.codeproject.com/cpp/vcredists_x86.asp

3. Black Ice 1D Barcode Engine

See http://www.blackice.com/barcodeLinear1D.htm
The Black Ice engine can be licensed with a one-time license fee, and seems fast
when dealing with horizontal and vertical symbols (less than 6° of skew). However
we experienced much slower scanning when searching for diagonal barcodes. Some
customers have reported that they found the Black Ice engine a bit more accurate
than the LeadTools and Axtel engines.

EZTwain looks for and loads “BiBrw1D.dll” - check the Black Ice SDK for information
about other DLLs required by BiBrw1D.dll.

Note: When setting up the Black Ice barcode engine, don't forget to copy the file
"impBarcode.adl".

4. Axtel AX-4 Linear Barcode Engine

This barcode engine is no longer being licensed by Axtel. However, if you have a
copy of AXBAR32.DLL, EZTwain Pro can use it. Select EZBAR_ENGINE_AXTEL.

5. Inspirant “INBarcodeOCR” Linear Barcode Engine

Available from Inspirant (www.inspirant.de) this engine is contained in a single file,
INBarcodeOCR.DLL. It supports EAN13, EAN8, UPCA, Code39, Code128, Interleaved
2-of-5, and UCCEAN128.

License it from Inspirant, place the DLL in the same folder as your copy of
Eztwain4.dll, or in System32/SysWOW64, and select it using:

 BARCODE_SelectEngine(EZBAR_ENGINE_INBARCODE)

Page 74

http://www.inspirant.de/
http://www.blackice.com/barcodeLinear1D.htm
http://www.codeproject.com/cpp/vcredists_x86.asp
http://msdn2.microsoft.com/en-us/library/ms235291.aspx

EZTwain Pro User Guide

BARCODE_IsAvailable
BOOL BARCODE_IsAvailable(void)

TRUE(1) if some barcode recognition is available (the necessary components and
DLLs are present and loadable). Returns FALSE(0) otherwise. For any barcode
services to be available, the EZT4Symbol.dll must be present and loadable. Some
developers do not include this DLL in their configuration, and in this case
BARCODE_IsAvailable will return FALSE (0).

The barcode manager and built-in engine are implemented in the helper library
EZT4Symbol.dll. EZT4Symbol.dll must be installed next to Eztwain4.dll – i.e. In the
same folder. Additional barcode engine DLLs, if any, must be placed where
LoadLibrary can find them: Alongside the Eztwain4.dll, in the System32/SysWOW64
folder, or somewhere on the PATH.

BARCODE_IsEngineAvailable
BARCODE_SelectEngine
BARCODE_SelectedEngine
BARCODE_EngineName
BOOL BARCODE_IsEngineAvailable(int nEngine)
BOOL BARCODE_SelectEngine(int nEngine)
int BARCODE_SelectedEngine(void)
string BARCODE_EngineName(int nEngine)

These four functions allow you to detect which engines are available, to select the
engine to use for recognition, and to get human-readable engine names.

Barcode Engine Codes

Symbol Code Description
EZBAR_ENGINE_NONE 0 ‘null’ barcode engine – no

recognition.
EZBAR_ENGINE_NATIVE 1 built-in Code 3-of-9 engine
EZBAR_ENGINE_AXTEL 2 Axtel AX-4 engine
EZBAR_ENGINE_LEADTOOLS 3 LEADTOOLS engine (ltbar15u.dll)
EZBAR_ENGINE_BLACKICE 4 Black Ice engine (BiBrw1D.dll)
EZBAR_ENGINE_LEADTOOLS16 5 LEADTOOLS V16 barcode engine
EZBAR_ENGINE_INBARCODE 6 Inspirant INBarcodeOCR

Note 1: 'engine 0' is the null engine – it does nothing and recognizes no barcode
types.

Note 2: In EZTwain 3, EZBAR_ENGINE_NATIVE was EZBAR_ENGINE_DOSADI.

Page 75

EZTwain Pro User Guide

BARCODE_ReadableCodes
int BARCODE_ReadableCodes(void)

Returns a mask of the barcode types (symbologies) recognized by the currently
selected barcode engine.

Barcode Types (Symbologies)

Barcode Types (Symbologies) Value (hex) Value (decimal)
EZBAR_EAN_13 0x00000001L 1
EZBAR_EAN_8 0x00000002L 2
EZBAR_UPCA 0x00000004L 4
EZBAR_UPCE 0x00000008L 8
EZBAR_CODE_39 0x00000010L 16
EZBAR_CODE_128 0x00000040L 64
EZBAR_CODE_I25 0x00000080L 128
EZBAR_CODA_BAR 0x00000100L 256
EZBAR_UCCEAN_128 0x00000200L 512
EZBAR_CODE_93 0x00000400L 1024
EZBAR_ANY 0xFFFFFFFFL -1

BARCODE_TypeName
String BARCODE_TypeName(int nType)

Returns a human-readable name for the specified barcode type/symbology.

BARCODE_SetDirectionFlags
BARCODE_GetDirectionFlags
BARCODE_AvailableDirectionFlags
BOOL BARCODE_SetDirectionFlags(int nDirFlags)
int BARCODE_GetDirectionFlags(void)
int BARCODE_AvailableDirectionFlags(void)

Define the directions the engine will scan for barcodes. The default is left-to-right.
Scanning for barcodes in multiple directions will slow the recognition process.
BARCODE_SetDirectionFlags will return TRUE if completely successful, FALSE if any
requested direction is invalid or not supported. As a special case, setting the
direction flags to -1 is interpreted as “select all supported directions.”

The native barcode engine does not support recognition of diagonal (highly skewed)
symbols.

Page 76

EZTwain Pro User Guide

Barcode Direction Flags

Barcode Direction Flags Value (can be OR’d together)
EZBAR_LEFT_TO_RIGHT 1
EZBAR_RIGHT_TO_LEFT 2
EZBAR_TOP_TO_BOTTOM 4
EZBAR_BOTTOM_TO_TOP 8
EZBAR_DIAGONAL 16
Common combinations
EZBAR_HORIZONTAL 3
EZBAR_VERTICAL 12

BARCODE_SetZone
BARCODE_NoZone
void BARCODE_SetZone(int x, int y, int w, int h)
void BARCODE_NoZone()

BARCODE_SetZone restricts subsequent barcode recognition to a rectangular zone in
each image. The rectangle is defined by x,y,w,h: x = pixels from left edge, y = pixels
from top edge, w = width in pixels, h = height in pixels.

BARCODE_NoZone restores the default condition, in which barcode recognition is
performed throughout each image.

BARCODE_Recognize
int BARCODE_Recognize(HDIB hdib, int nMaxCount, int nType)

Find and recognize barcodes in the given image.
Don't look for more than nMaxCount barcodes (-1 means 'any number').
Expect barcodes of the specified type (-1 means 'any supported type')
You can add or 'or' together barcode types, to tell the recognizer to look for more
than one symbology. Return values:

>0 n barcodes found
0 no barcodes found

-1 barcode services not available.
-3 invalid or null image

Not surprisingly, recognition slows down as you allow more barcodes to be found,
and as you allow more symbologies to be recognized.

BARCODE_Type
int BARCODE_Type(int n)

Return the type of the nth barcode found by the last call to BARCODE_Recognize.
The returned code will be one of those listed above under Barcode Types.

Page 77

EZTwain Pro User Guide

BARCODE_Text
string BARCODE_Text(int n)

Return the text of the nth barcode found by the last call to BARCODE_Recognize.
Barcodes found by BARCODE_Recognize are numbered from 0. If there is any
problem of any kind, this function returns the empty string. In some programming
languages this function is not available and you must use BARCODE_GetText
(below).

BARCODE_GetText
BOOL BARCODE_GetText(int n, LPSTR Text)

Get the text of the nth barcode found by the last BARCODE_Recognize.
Please allow 64 characters in your text buffer. Use a smaller buffer only if you know
that the barcode type is limited to shorter strings.

BARCODE_GetRect
BOOL BARCODE_GetRect(int n, double *L, double *T, double *R,
double *B)

Get the rectangle around the nth barcode found by the last BARCODE_Recognize,
returning the top-left and bottom-right coordinates, in pixels, in the four parameters.
(0,0) is the visual top left corner of the image. Returns TRUE(1) if successful,
FALSE(0) otherwise. The only likely cause of a FALSE return would be an invalid
value of n, or if you are in C or C++, a null pointer parameter.

Page 78

EZTwain Pro User Guide

Functions – Optical Character Recognition (OCR)

Introduction

Optical Character Recognition (OCR) is the industry term for the reading of text in an
image by machine. You will also sometimes see it called Intelligent Character
Recognition (ICR). This is highly relevant to scanning because so much of what we
scan contains text. Extracting the text on a scanned page can be useful for indexing
documents, for searching them, and for automatic routing and processing.

EZTwain OCR is based on a multi-engine architecture with a specific set of supported
engines in each release. You can enumerate the supported or available engines,
select an engine, and use that engine to recognize text in scanned or loaded images.

EZTwain Pro currently supports only one OCR engine, the TOCR engine by Transym
Computer Services Ltd (www.transym.com) This engine is not provided by Atalasoft
– it must be separately licensed and installed. The TOCR engine was chosen because
it was the engine most recommended by our customers for its speed and accuracy at
plain text recognition. It outputs plain text – no font, font-size, style or other
formatting information is provided.

Although this release of EZTwain Pro only supports one engine, we expect to support
additional engines in the future. Please code defensively: Engine codes are constants
and will never change, but the default OCR engine may change from release to
release. At start-up, EZTwain Pro will select the available engine that we think will
give the most satisfactory results for the greatest number of new customers. Keep in
mind that in the future this may not be the Transym engine, or it could be a
substantially different version of the Transym engine.

Using TOCR with EZTwain Pro is relatively simple:
1. Install the TOCR product according to Transym's directions.
2. In your application, start by selecting the TOCR engine using

OCR_SelectEngine(EZOCR_ENGINE_TRANSYM)
(Or the equivalent in your programming language.)

3. If that returns True (1) you may invoke other OCR services either directly
using OCR_RecognizeDib, or indirectly using functions such as

OCR_IsAvailable
BOOL OCR_IsAvailable()

This function returns True (1) if any OCR services are available. This does not mean
that any particular engine is available: Always check for the particular engine you
prefer using OCR_IsEngineAvailable.

OCR_Version
int OCR_Version()

Page 79

http://www.transym.com/

EZTwain Pro User Guide

Returns the version number of the EZTwain Pro OCR subsystem, as the usual m.nn
fraction multiplied by 100. So a version 1.25 OCR subsystem will return 125. Note
that this is the version of our OCR subsystem, not the version of an OCR engine.

OCR_IsEngineAvailable
OCR_SelectEngine
OCR_SelectDefaultEngine
OCR_SelectedEngine
OCR_EngineName

BOOL OCR_IsEngineAvailable(int nEngine)
BOOL OCR_SelectEngine(int nEngine)
BOOL OCR_SelectDefaultEngine()
int OCR_SelectedEngine()
string OCR_EngineName(int nEngine)

These functions allow you to test for availability of a specific OCR engine, to select an
engine, to see what the currently selected engine is, and to retrieve the human-
readable name of any supported engine.

OCR Engine Codes

Symbol Code Description
EZOCR_ENGINE_NONE 0 ‘null’ OCR engine - turns off OCR.
EZOCR_ENGINE_TRANSYM 1 TOCR engine by Transym Ltd.

Using OCR_EngineName, you can enumerate the supported OCR engines, to populate
a listbox for example. Just call OCR_EngineName(i) with i = 0, 1, ... until it returns
an empty string.

OCR_SetEngineKey
void OCR_SetEngineKey(string key)

Passes a registration/unlock key to the selected OCR engine.

For example, Transym Computer offers a reseller version of their TOCR engine. When
you license this product, you receive a special version of TOCR, and a 16-digit
registration number. Once the eller version of TOCR is installed on a computer, you
can use it through EZTwain by passing in the registration number with a call like
this:

OCR_SetEngineKey(“0123-4567-89AB-CDEF”)

OCR_SetEnginePath
void OCR_SetEnginePath(string path)

Sets the directory from which to load the OCR engine. You can set the path to “”.
This function does not check that the path exists, or that it has valid syntax.

Page 80

EZTwain Pro User Guide

By default the engine path is “”, and EZTwain searches in the 'usual places' –
according to the Windows DLL search sequence.

If the engine path is set to a non-empty string, EZTwain looks for the OCR engine
only in the specified directory.

OCR_SetLineBreak
OCR_SetLineBreak(string sEOL)

Set the character sequence to use for line breaks in OCR'd text (as returned by
OCR_Text and OCR_GetText).

 The default OCR line break is \n (LF or 0x0A)
 Other commonly used line breaks are \r (CR, 0x0D) or CRLF.
 Set this before doing OCR - it does not modify already recognized text.

OCR_RecognizeDib
int OCR_RecognizeDib(HDIB hdib)

Recognize text in the specified image, using the currently selected engine. The
recognized text can be retrieved with OCR_Text or OCR_GetText, and the position
information with OCR_GetCharPositions and OCR_GetCharSizes.

Return codes:
0 no error, but no text found.
n>0 n characters of text are available – including spaces and newlines.
-1 OCR services or selected engine not available.
-3 the image handle is null or invalid.
-5 there was an internal error or the OCR engine returned an error.

In case of an error, call TWAIN_ReportLastError, TWAIN_LastErrorCode, or similar
functions for more details.

OCR_RecognizeDibZone
int OCR_RecognizeDibZone(HDIB hdib, int x, int y, int w, int h)

Recognize text in the specified rectangle (zone) of the specified image, using the
currently selected engine. Otherwise identical to OCR_RecognizeDib.

Be sure you understand the parameters: (x,y,w,h) specify a rectangle w pixels wide,
h pixels high, starting y pixels down from the top of the image and x pixels in from
the left edge.

OCR_Text
string OCR_Text()

Page 81

EZTwain Pro User Guide

Returns the text recognized by the last call to OCR_RecognizeDib. If there is any
problem, returns the empty string.

OCR_GetText
BOOL OCR_GetText(char *buffer, int buflen)

Retrieves the text recognized by the last call to OCR_RecognizeDib. It copies no
more than buflen characters into buffer, including a terminating NUL (0 character)
for those languages that require this. If successful, returns True (1), otherwise False
(0).

OCR_TextLength
int OCR_TextLength()

Returns the number of characters in the stored OCR text. Does not include the
terminating NUL, for those of you working in languages that care about that.

OCR_TextOrientation
Int OCR_TextOrientation()

Returns the orientation of the text found by the last OCR_RecognizeDib.
The value is the number of degrees clockwise that the input image was auto-rotated
before OCR was performed.
Currently, the returned value is always a multiple of 90, so the only possible values
are 0, 90, 180 and 270.

Example: If the original was turned 90 degrees clockwise before scanning, it will be
auto-rotated 90 degrees *counter-clockwise* before OCR, so in that case the value
of this function will be 270.

OCR_GetCharPositions
OCR_GetCharSizes
BOOL OCR_GetCharPositions(long x[], long y[])
BOOL OCR_GetCharSizes(long w[], long h[])

Retrieve the positions and sizes, respectively, of the characters recognized by the
last call to OCR_RecognizeDib. Positions are in pixels relative to the top left corner
of the processed image. Sizes are in pixels.

It is the caller's responsibility to ensure that x, y, w, and h are arrays of word-width
integers, allocated large enough to hold N entries, where N is the character count
returned by OCR_TextLength or the last call to OCR_RecognizeDib. Sorry we don't
have example code yet.

OCR_ClearText
void OCR_ClearText()

Page 82

EZTwain Pro User Guide

Clear the text and other information stored by the last OCR recognition. After this
call, OCR_TextLength will return 0, and OCR_Text and OCR_GetText will return the
empty string.

OCR_WritePage
BOOL OCR_WritePage(HDIB hdib)

Recognize the text in the specified image, then write the image plus the (hidden)
text to the currently open PDF output file. An available OCR engine must be
selected. There must be a PDF file currently open for output, opened with
TWAIN_BeginMultipageFile.

OCR_WriteTextToPDF
BOOL OCR_WriteTextToPDF()

Write the text from the last OCR to the next PDF page. The output text is retained
until a page is written to a PDF file, then it is placed (invisibly) on that page.

Page 83

EZTwain Pro User Guide

Functions – Image Files
This section...

 describes the options and restrictions of each file format,
 explains how EZTwain decides which format to use when writing a file,
 describes which DLLs are required to support the various file formats,
 lists the functions that write images to files.

File Formats - Restrictions and Options

Format Image Type(BPP) Options
BMP No options.

No compression.
Single page/image per file.

BW(1),
Palette(4,8),
RGB(24)

These are standard BMP formats.

Gray(8) EZTwain can read and write this format, but some
other programs may interpret a BMP of this format
as a palette-color image with 256 colors (which all
happen to be shades of gray...)

Gray(16),
RGB(48),
CMY(24,48),
CMYK(32)

EZTwain will read and write these non-standard
formats in BMP, but few other programs will read
them correctly.

TIFF Many options.
Most accomodating file format.
EZTwain can append to an existing file.
Single or multiple pages/images per file.
See also: TIFF , page 97

BW(1) Default compression: CCITT Group 4 Fax, which
does very well on scanned office documents.
Other supported BW compressions are RLE (run-
length encoding), CCITT Group 3 Fax, LZW, and
‘Packbits’.

Palette(4,8) Default compression: None.
Some palette images compress well with LZW.

Gray(8),
RGB(24),
CMY(24),
CMYK(32)

Default compression: None.
JPEG compression is available, but creates
compatibility problems with some older software.

Gray(16),
RGB(48),

These ‘deep’ images can be written (and read),
but are always stored uncompressed.

Page 84

EZTwain Pro User Guide

CMY(48)

PDF Highly flexible format.
Supports single and multipage files.
EZTwain can read its own PDF files, but not most
other PDFs.
EZTwain can append to its own PDF files, probably
some others.
See also: PDF , 100

BW(1),
Palette(4,8)

Always compressed with ‘Flate’ compression,
which is a form of LZ compression.

Gray(8),
RGB(24),
CMYK(24)

Always compressed with JPEG compression.
Degree of compression controlled by
TWAIN_SetJpegQuality.
Note that CMY images are not supported.

JPEG Gray(8),
RGB(24),
CMY(24)

Technically, EZTwain writes the JFIF file format,
which is a non-progressive JPEG stream with some
additional tags such as resolution.
One page/image per file.
Degree of compression controlled by
TWAIN_SetJpegQuality.
Not defined for BW or Palette images, nor for
‘deep’ images of > 8 bits/channel.

GIF BW(1),
Palette(4,8)

No options.
Single image per file.
Compression is always by LZW.

RGB(24,48),
CMY(24,48),
CMYK(32)

These can be written to GIF format but they are
always converted to 8-bit palette color before
writing. This is suitable only for export, because it
destroys so much of the information in the image.

DCX BW(1) No options.
Rarely used format, commonly associated with
facsimile applications.
Multiple pages/images allowed in a file.
Can be appended to, see:
TWAIN_SetFileAppendFlag.
Standard compression does well on documents.

PNG BW(1),
Palette(4,8),
RGB(24)

No options.
Single image per file.
Standard compression is LZ, which does well on
scanned printed or typed documents, poorly on
images and photos.

Page 85

EZTwain Pro User Guide

File Format Codes (TWFF_* Codes)

Format
Name

Code Extension Meaning

TWFF_TIFF 0 .tif, .tiff Tagged Image File Format.

Note: By default, Group4 Fax compression is used
for 1-bit images, all others are uncompressed.

TWFF_BMP 2 .bmp Windows Bitmap – uncompressed.

Note: BMP support is built into EZTwain, so is
always available.

TWFF_JFIF 4 .jpg, .jpeg JPEG File Interchange Format 1.02

TWFF_PNG 7 .png Portable Network Graphics

TWFF_DCX 97 .dcx DCX - multipage PCX fax format.
TWFF_GIF 98 .gif Graphics Interchange Format

Note: TWFF_GIF is not a TWAIN constant, TWAIN
does not recognize GIF. GIF support is only
provided by EZTwain.

TWFF_PDF 99 .pdf (Adobe) Portable Document Format

Note: Same comment as for GIF above.

How EZTwain Chooses Output Format

If you use TWAIN_AcquireToFilename or DIB_WriteToFilename, the format of the
output file is determined as follows:

If the specified filename ends in .BMP, .JPG, .JPEG, .TIF, .TIFF, .PNG, .GIF, .DCX
or .PDF, then the file is saved in the corresponding format. Otherwise the current
Save Format is used. The Save Format is set by TWAIN_SetSaveFormat and is
initially BMP.

Similarly, TWAIN_AcquireMultipageFile will write PDF format if the filename ends
with .PDF, TIFF format if the filename ends with .TIF, .TIFF or .MPT (Multi-Page Tiff),
and DCX format if it sees a .DCX extension. If it does not recognize the file
extension, it uses the current Multipage Format – which is set by
TWAIN_SetMultipageFormat (p 35) and is initially TIFF.

File Format Support - Optional DLLs

The EZTwain main module (Eztwain4.dll) by itself can only read and write the BMP
file format. To write the other file formats, the optional EZ* DLLs must be properly
installed - See EZTwain Components, page 4.
Important: If you use either EZT4Tiff.dll or EZT4Pdf.dll, you must also install
EZT4Jpeg.dll (whether or not you actually use JPEG compression.)

Page 86

EZTwain Pro User Guide

General file-writing settings

TWAIN_SetFileAppendFlag/TWAIN_GetFileAppendFlag
void TWAIN_SetFileAppendFlag(int nAppend)
int TWAIN_GetFileAppendFlag(void)

These functions set and query the File Append Flag. This flag controls what EZTwain
does in the event of writing to a TIFF or DCX file which already exists. If the File
Append Flag is non-zero and the program attempts to write to an existing TIFF or
DCX file, EZTwain appends images to the existing file. Otherwise if the File Append
Flag is 0 (the default case), writing a TIFF, DCX (or any other) file overwrites any
previous contents of that file. Note: If there is no existing file, this flag is ignored.

TWAIN_SetJpegQuality / TWAIN_GetJpegQuality
void TWAIN_SetJpegQuality(int nQ)
int TWAIN_GetJpegQuality(void)

Sets the quality of JPEG compression throughout EZTwain, including any
subsequently saved JPEG/JFIF file, or JPEG compressed image in PDF and TIFF
format. You can use any value from 1 to 100, although I have never heard of
anybody using a value below 40 in practice. This table lists some sample values for
guidance. The sample compression gives the ratio of the uncompressed to the
compressed JPEG file, for a 200 DPI RGB scan of a National Geographic magazine
cover.

Quality Description Sample Compression
1 Lowest-quality, smallest files 150X
25 Low quality 40X
50 Moderate quality 20X
75 Good quality [DEFAULT] 12X
90 High quality 6X
100 Highest quality 2.5X

You cannot directly control the size of JPEG files – lower quality means smaller files,
higher quality means larger, but the relationship is non-linear and depends on the
content of the image being compressed.

Even at quality 100 JPEG is still a lossy compression - there will still be degradation
of the image, although it is very unlikely to be detectable by the human eye.
Nonetheless there are subtle mathematical changes in the image, and repeated
compression and recompression even at quality level 100 can lead to cumulative
(visible) image degradation.

PDF: By default, PDF uses JPEG compression for grayscale and RGB or CMYK color
images. See PDF_SetCompression for more information.

TIFF: Subject to some warnings about compatibility, TIFF files can be written with
JPEG compression (See TWAIN_SetTiffCompression.

Page 87

EZTwain Pro User Guide

Writing images to files

DIB_WriteToFilename/TWAIN_WriteToFilename
int DIB_WriteToFilename(HANDLE hdib, string pszFile)
int TWAIN_WriteToFilename(HANDLE hdib, string pszFile)

Writes an image to a file. If the file string ends with a recognized extension (BMP,
JPG, JPEG, TIF, TIFF, PNG, GIF, DCX or PDF), then the file is written in the implied
format. Otherwise, the file is written using the current save format: See
TWAIN_SetSaveFormat. Normally if the output file exists it is overwritten, but TIFF,
PDF and DCX files can be appended to: See TWAIN_SetFileAppendFlag.

hdib DIB handle, as returned by TWAIN_Acquire
pszFile filename string

If pszFile is NULL or points to a null string, the user is prompted for the filename and
format with a standard Windows File Save dialog. The Save dialog will only offer
formats that are available and valid for the given image.

Return values:
0 success

-1 user cancelled File Save dialog
-2 file open error (invalid path or name, or access denied)
-3 image is invalid, or cannot be written in this format.
-4 writing data failed, possibly output device is full

DIB_WriteArrayToFilename
int DIB_WriteArrayToFilename(HDIB ahdib[], int n, string File)

Write n images from array ahdib to the specified file.
If n is 1, this is exactly equivalent to calling DIB_WriteToFilename.
If n > 1, this is a shortcut for calling
 TWAIN_BeginMultipageFile,
 TWAIN_DibWritePage (for each image)
 TWAIN_EndMultipageFile
...with appropriate error handling, of course.

 Return values:
0 success

-1 user cancelled File Save dialog
-2 file open error (invalid path or name, or access denied)
-3 a) image is invalid (null or invalid DIB handle)

b) support for the save format is not available (missing DLL?)
c) DIB format incompatible with save format e.g. B&W to JPEG.

-4 writing data failed, possibly output device is full
-5 other unspecified internal error
-6 a multipage file is already open
-7 multipage support is not installed.

Page 88

EZTwain Pro User Guide

TWAIN_BeginMultipageFile
int TWAIN_BeginMultipageFile(string pszFile)

Create or open a multipage file. If pszFile is NULL(0) or points to an empty string,
prompts the user for the file name, using a standard File Save dialog.

If the filename ends with .TIF, .TIFF, or .MPT, a TIFF file is started. If it ends with
.DCX a DCX file is started. If it ends with .PDF a PDF file is started. Otherwise the
file uses the current default multipage file format (see p 35), and if no extension is
present, an appropriate extension for the format is added.

If the file already exists (and is writable) its content is deleted if the File Append Flag
is 0, or it is appended to if the File Append Flag is non-zero. See
TWAIN_SetFileAppendFlag.

Return values:
0 success.

-1 user was prompted for file and cancelled the File Save dialog.
-2 file open error (invalid path or name, or access denied)
-3 the required EZT4Tiff.dll, EZT4Dcx.dll or EZT4Pdf.dll failed to load.
-5 unexpected internal error
-6 multipage file already open.

TWAIN_DibWritePage
int TWAIN_DibWritePage(HANDLE hdib)

Append a page (image) to the currently open multipage file. This call will fail unless
it follows a successful call to TWAIN_BeginMultipageFile.

Return values:
0 success.

-3 the required library (EZT4Tiff.dll, EZT4Dcx.dll, EZT4Pdf.dll) failed to
load or

invalid DIB or DIB handle, or
image format not supported (e.g. 16-bit/pixel to PDF)

-4 Write error: Output device is full?
-5 unexpected internal error.
-6 multipage file not open.

TWAIN_EndMultipageFile
int TWAIN_EndMultipageFile(void)

Return values:
0 success.

-3 the required EZT4Tiff.dll, EZT4Dcx.dll or EZT4Pdf.dll failed to load.
-4 Write error: Output device is full?
-5 some internal error
-6 multipage file not open

Page 89

EZTwain Pro User Guide

TWAIN_IsMultipageFileOpen
BOOL TWAIN_IsMultipageFileOpen()

Returns True(1) if a multipage output file is open, False(0) otherwise.
Only one multipage output file can be open at a time (per process.)

TWAIN_MultipageCount
TWAIN_MultipageCount() => int

Return the number of images written to the most recently started multipage file. In
other words, this returns a counter that is reset by BeginMultipageFile, and is
incremented by DibWritePage. Can also be used during or after
TWAIN_AcquireMultipageFile.

If you might be appending to a file and want to know the total page count of the file,
see DIB_GetFilePageCount/TWAIN_PagesInFile 91.

TWAIN_SetOutputPageCount
void EZTAPI TWAIN_SetOutputPageCount(int nPages)

Tell EZTwain how many pages you are about to write to a file. This is OPTIONAL: The
only effect is to add PageNumber tags to TIFF files. You can use nPages=0, which
means "I don't know". See Faxing with TIFF: TIFF Class F and RFC 2301, p 99.

Page 90

EZTwain Pro User Guide

Loading images from files

DIB_LoadFromFilename
HANDLE DIB_LoadFromFilename(string pszFile)

Load an image from the specified file. If anything goes wrong the return value is
NULL (0) - call TWAIN_LastErrorCode and related functions for details. If the file is
multipage, normally the first image is loaded but see DIB_SelectPageToLoad. If
pszFile is NULL or points to an empty string, the user is prompted to choose a file
with a standard File Open dialog.

TWAIN_FormatOfFile
int TWAIN_FormatOfFile(string pszFile)

Return the format of the specified file. See File Format Codes (TWFF_* Codes)
above. A return value < 0 means unrecognized format.

DIB_GetFilePageCount/TWAIN_PagesInFile
int DIB_GetFilePageCount(string pszFile)
int TWAIN_PagesInFile(string pszFile)

Return the number of pages in the specified file. The multipage formats supported
are TIFF, PDF and DCX, all other recognized formats will return a page count of 1. A
return value < 0 indicates an error: No such file, unreadable, unrecognized format,
etc.

DIB_SelectPageToLoad
void DIB_SelectPageToLoad(int nPage)

For use when loading multipage files. Tells DIB_LoadFromFilename which page to
load next, from a multipage file. Default is page 0 (first page in file). This value is
reset to 0 after each call to DIB_LoadFromFilename. Example:

// Load all pages from file:
int N = DIB_GetFilePageCount(sFilename);
for (int i = 0; i < N; i++) {

DIB_SelectPageToLoad(n);
hdib[i] = DIB_LoadFromFilename(sFilename);

}

DIB_LoadPage
HDIB DIB_LoadPage(string pszFile, int nPage)

Short for DIB_SelectPageToLoad, DIB_LoadFromFilename.
Loads the specified page from the specified file. Page 0 is the first page in a file.
Multiple pages are only supported in TIFF, PDF and DCX format, all other file formats
have a single page (page 0).

Page 91

EZTwain Pro User Guide

Remember that EZTwain cannot generally read PDF files generated or modified by
other software.

DIB_LoadArrayFromFilename
int DIB_LoadArrayFromFilename(HDIB ahdib[], int n,

 string Filename)

Load up to n images as DIBs into an array, reading from the specified file.
If filename is null or the empty string, the user is prompted to select a file.

If the user is prompted and cancels, this function returns -10.
Otherwise if successful it returns the number of pages (images) loaded.
Otherwise it returns -1 and you should call TWAIN_ReportLastError,
TWAIN_LastErrorCode,etc.

If this function returns < 0, the first n entries of the DIB array will be NULL (0).
If returns r >= 0, the first r entries of the DIB array will contain handles to DIBs
representing the first r images in the file.
The remaining n-r entries in the DIB array will be NULL (0).

Remember to call DIB_Free on any DIB that you are no longer using.
As a convenience, there is a function DIB_FreeArray(array, n) which calls DIB_Free
on the first n entries in an array of DIBs. It knows to ignore NULL(0) entries.

DIB_LoadPagesFromFilename
int DIB_LoadPagesFromFilename(HDIB ahdib[], int i, int n,
 string Filename)

Similar to DIB_LoadArray, this function loads n images from the specified file,
starting with the ith image in the file (counting from 0 as the first image) into the
ahdib array.

Very similar to DIB_LoadArrayFromFilename (above) except that it always loads n
images or fails.

Page 92

EZTwain Pro User Guide

General file format inquiries

TWAIN_IsJpegAvailable
int TWAIN_IsJpegAvailable(void)

TWAIN_IsPngAvailable
int TWAIN_IsPngAvailable(void)

TWAIN_IsTiffAvailable
int TWAIN_IsTiffAvailable(void)

TWAIN_IsPdfAvailable
int TWAIN_IsPdfAvailable(void)

TWAIN_IsGifAvailable
int TWAIN_IsGifAvailable(void)

TWAIN_IsDcxAvailable
int TWAIN_IsDcxAvailable(void)

TWAIN_IsFormatAvailable
int TWAIN_IsFormatAvailable(int nFF)

Return TRUE (1) if the specified image file format is available i.e. the necessary
EZ*.dll files can be found and loaded. Returns FALSE(0) if not.

TWAIN_FormatVersion
int TWAIN_FormatVersion(int nFF)

Returns the version number, times 100, of the module that implements the specified
file format. For example, TWAIN_FormatVersion(TWFF_PDF) returns the version of
the PDF module. A return value of 123 means version 1.23. If the format code is
unrecognized or the file format module is not available, this function returns 0.

TWAIN_IsFileExtensionAvailable
int TWAIN_IsFileExtensionAvailable(string sExt)

This function takes a file-extension as a string and returns TRUE (1) if the
corresponding file format support is available. It returns FALSE (0) if the format is
not available (presumably because the required DLL or DLLs are not installed) or if it
does not recognize the extension. Case does not matter, and a leading ‘.’ is optional.
Examples:
TWAIN_IsFileExtensionAvailable(“tiff”)
TWAIN_IsFileExtensionAvailable(“.PNG”)

Page 93

EZTwain Pro User Guide

TWAIN_FormatFromExtension
int TWAIN_FormatFromExtension(string sExt, int nFF)

Return the format implied by a file specification or extension. See File Format Codes
(TWFF_* Codes) above. If the extension is not recognized, returns nFF. If you pass
this function a filename it will parse it to find the extension. If the string contains no
‘.’, it is assumed to be an exact extension string e.g. “tif”. Case is ignored of course.

TWAIN_ExtensionFromFormat
string TWAIN_ExtensionFromFormat(int nFF, string sDefExt)

Return the default extension for the file format, including leading ‘.’. See File Format
Codes (TWFF_* Codes) above. If nFF is not a valid format code, the string sDefExt is
returned.

TWAIN_SetSaveFormat
int TWAIN_SetSaveFormat(int nFF)

Specifies the default file format for subsequent calls to DIB_WriteToFilename and
TWAIN_AcquireToFilename. Displays a warning message if the format is not
available: See TWAIN_IsFormatAvailable

This function is not normally needed: All functions that write an image file will infer
the file format from the file extension. If your filenames include recognizable
extensions like “.tif”, you do not need to call TWAIN_SetSaveFormat.

Returns TRUE (1) if successful, FALSE (0) if format is invalid or not available.

TWAIN_GetSaveFormat
int TWAIN_GetSaveFormat()

Return the current default save format.

TWAIN_LastOutputFile
string TWAIN_LastOutputFile()

Return the name of the last file written by EZTwain.
Useful if you pass NULL or “” as a filename to DIB_WriteToFilename or
TWAIN_AcquireToFilename, etc.
Not available in Visual Basic.

Page 94

EZTwain Pro User Guide

Functions – Image Files in Memory

Writing Images to Files in Memory

DIB_WriteToBuffer
int DIB_WriteToBuffer(HANDLE hdib, int nFormat, BYTE* pbuffer,
int nbMax)

Write the image into the buffer in the specified file format, not exceeding nbMax
bytes. The return value is the actual size of the image, which may be more or less
than nbMax. If the return value > nbMax, it means only part of the image was
written, and the buffer needs to be bigger. If pBuffer is NULL or nbMax=0 this
function simply returns the required buffer size in bytes.

A return value of <= 0 indicates an error, such as
 The image is invalid (null or invalid DIB handle)
 The file format is unrecognized, not supported, not installed, etc.
 You can't save that kind of image in that format e.g. B&W image to JPEG format.
 Insufficient memory for temporary data structures (or corrupted heap)
 Other internal failure.

Call TWAIN_LastErrorCode and similar functions for more details.

DIB_WriteArrayToBuffer
int DIB_WriteArrayToBuffer(const HDIB ahdib[], int n, int
nFormat, BYTE* pBuffer, int nbMax)

A combination of DIB_WriteArrayToFilename and DIB_WriteToBuffer.
Writes n images in an array to a memory buffer in the specified file format.
See DIB_WriteToBuffer above for the meaning of pBuffer and nbMax.

Return value: See DIB_WriteToBuffer above.

Page 95

EZTwain Pro User Guide

Reading Images from Files in Memory

DIB_FormatOfBuffer
int DIB_FormatOfBuffer(const BYTE* pBuffer, int nBytes)

Like TWAIN_FormatOfFile, but examines a file stored in a memory buffer.

DIB_PageCountOfBuffer/DIB_BufferPageCount
int DIB_PageCountOfBuffer(const BYTE* pBuffer, int nBytes)
int DIB_BufferPageCount(const BYTE* pBuffer, int nBytes)

Return the number of pages (images) in a file stored in a memory buffer.

DIB_LoadFromBuffer
HANDLE DIB_LoadFromBuffer(const BYTE* pBuffer, int nBytes)

Load an image from a buffer in memory containing data formatted as an image file.
For multipage files, if DIB_SelectPageToLoad was called first the designated page will
be loaded, otherwise the first image in the file is loaded.
 pBuffer is the address of the buffer (memory block) holding the file to read.
 nBytes is the number of bytes of data in buffer.

Error handling is same as for DIB_LoadFromFilename .

DIB_LoadPageFromBuffer
HDIB DIB_LoadPageFromBuffer(const BYTE* pBuffer, int nBytes,
 int nPage)

Load the specified page from a buffer - the buffer must contain data in a supported
image file format. If the image format is one that can hold only one image, the page
number is ignored.
 pBuffer is the address of the buffer (memory block) holding the file to read.
 nBytes is the number of bytes of data in buffer.
 nPage is the index of the page (image) to read, counting from 0.

DIB_LoadArrayFromBuffer
int DIB_LoadArrayFromBuffer(HDIB ahdib[], int nMax,
 const BYTE* pBuffer, int nBytes)

Load up to nMax images as DIBs into an array, reading from a file in memory.
 pBuffer is the address of the buffer (memory block) holding the file to read.
 nBytes is the number of bytes of data in the buffer.

Returns the number of images loaded if successful, otherwise it returns -1 and you
should call TWAIN_ReportLastError, TWAIN_LastErrorCode, or similar.

Make sure you eventually call DIB_Free, or DIB_FreeArray to free unused DIBs.

Page 96

EZTwain Pro User Guide

Functions - TIFF Specific

TWAIN_SetTiffCompression/TWAIN_GetTiffCompression
int TWAIN_SetTiffCompression(int nPT, int nComp)
int TWAIN_GetTiffCompression(int nPT)

Set or get the compression mode to use when writing TIFF files. You must specify
the pixel type (image type) to which this compression applies (See p. 44 for the pixel
type codes.) If you are not familiar with the properties of these compression
algorithms, try Google – or contact Technical Support.

TIFF Compression Modes

Constant Name Value Compression Algorithm Applies to
TIFF_COMP_NONE 1 No compression all
TIFF_COMP_CCITTRLE 2 CCITT modified Huffman RLE BW
TIFF_COMP_CCITTFAX3 3 CCITT Group 3 fax encoding1 BW
TIFF_COMP_CCITTFAX4 4 CCITT Group 4 fax encoding BW
TIFF_COMP_LZW 5 LZW2,3 all
TIFF_COMP_JPEG 7 JPEG-in-TIFF4 RGB, GRAY

The default compression for 1-bit BW is TIFF_COMP_CCITTFAX4, and for all other
image types is TIFF_COMP_NONE.
Note 1: Enables TIFF Class F - see comments on page 99.
Note 2:The Unisys patent on LZW compression has expired.
Note 3: LZW compression works poorly on almost all scans and camera images.
Note 4: JPEG-in-TIFF has compatibility issues: EZTwain writes revised TIFF 6 JPEG.

TWAIN_SetTiffStripSize/TWAIN_GetTiffStripSize
void TWAIN_SetTiffStripSize(int nBytes)
int TWAIN_GetTiffStripSize(void)

By default, images in TIFF files are stored in horizontal strips with a default size of
32768 bytes (roughly). A few nonconforming TIFF Readers cannot handle images
with more than one strip, or images with large strips. Use these functions to work
around this. Setting the TIFF strip size to –1 causes all images to be written using 1
strip.

TWAIN_SetTiffImageDescription
TWAIN_SetTiffDocumentName
void TWAIN_SetTiffImageDescription(string pszText)
void TWAIN_SetTiffDocumentName(string pszText)

These functions set the value of two standard TIFF tags, ImageDescription and
DocumentName. These apply only to the next TIFF file written by EZTwain, and
when EZTwain finishes writing a TIFF file, it forgets (clears) these values.

Page 97

EZTwain Pro User Guide

TWAIN_SetTiffTagShort
TWAIN_SetTiffTagLong
TWAIN_SetTiffTagDouble
TWAIN_SetTiffTagString
TWAIN_SetTiffTagRational
TWAIN_SetTiffTagRationalArray
TWAIN_SetTiffTagBytes
TWAIN_ResetTiffTags
BOOL TWAIN_SetTiffTagShort(int tag, short sValue)
BOOL TWAIN_SetTiffTagLong(int tag, long nValue)
BOOL TWAIN_SetTiffTagString(int tag, const char* pzText)
BOOL TWAIN_SetTiffTagDouble(int tag, double dValue)
BOOL TWAIN_SetTiffTagRational(int tag, double dValue)
BOOL TWAIN_SetTiffTagRationalArray(int tag, double da[], int n)
BOOL TWAIN_SetTiffTagBytes(int tag, const BYTE* pdata, int nLen)
void TWAIN_ResetTiffTags(void)

The tag values you set with these functions will be included in each image
subsequently written to TIFF until you call TWAIN_ResetTiffTags.

The TIFF standard is available through this website:
http://www.remotesensing.org/libtiff/document.html

The specific data formats needed by each tag are documented here:
http://www.remotesensing.org/libtiff/man/TIFFSetField.3tiff.html

We recommend you use the Set function that corresponds to the TIFF data type of
the tag, although TWAIN_SetTiffTagDouble will correctly set any standard RATIONAL,
SRATIONAL, FLOAT or DOUBLE tag, and TWAIN_SetTiffTagLong will set any standard
SHORT, LONG, or SLONG tag.

Custom and private TIFF tags: Please reference the TIFF standard for more details on
private and custom tags. The SetTiffTag functions can be used to set such tags -
However for such tags you must use the function of the correct type: No conversion
will be performed.

Example of setting TIFF tags:

// Save hdib to TIFF, with artist and ‘bad fax lines’:
#define TIFFTAG_ARTIST 315
#define TIFFTAG_BADFAXLINES 326
TWAIN_SetTiffTagString(TIFFTAG_ARTIST, “ABBA”)
TWAIN_SetTiffTagLong(TIFFTAG_BADFAXLINES, 0)
 DIB_WriteToFilename(hdib, “c:\DancingQueen.tif”)
TWAIN_ResetTiffTags()

Page 98

http://www.remotesensing.org/libtiff/man/TIFFSetField.3tiff.html
http://www.remotesensing.org/libtiff/document.html

EZTwain Pro User Guide

TWAIN_GetTiffTagAscii / TWAIN_TiffTagAscii
BOOL TWAIN_GetTiffTagAscii(string file, int page, int tag, int
len, char buffer)
string TWAIN_TiffTagAscii(string file, int page, int tag)

Read the value of an ASCII-string-valued TIFF tag from the specified page of the
specified TIFF file.

TWAIN_TiffTagAscii returns the tag value as a string, returning the empty string if
anything goes wrong.

TWAIN_GetTiffTagAscii copies the string into buffer, which has room for at least len
characters. Usually the buffer variable mst be allocated or resized before you call
this function, to reserve the space. Returns True(1) if successful, False(0) otherwise.

Faxing with TIFF: TIFF Class F and RFC 2301

There are several variations of TIFF specialized for facsimile (fax) applications.

TIFF Class F is a variant of TIFF for storing faxes, which according to one source “has
been in common usage for many years” - as of 1997. It is not an official standard.
See for example:
http://palimpsest.stanford.edu/bytopic/imaging/std/tiff-f.html

IETF RFC 2301 - “File Format for Internet Fax” is a draft Internet standard:
http://www.ietf.org/rfc/rfc2301.txt

EZTwain Pro can write TIFF Class F files: You will need to set a few tags ‘by hand’, as
demonstrated by this code fragment which writes out a DIB. Note that the image
needs to be B&W (1 bit/pixel), have a width of 1728, 2048, or 2482 pixels, and have
a resolution of 204 DPI horizontal and either 98 or 196 DPI vertical.

HDIB hdib = DIB_Allocate(1, 1728, 1056);
DIB_SetResolution(hdib, 200, 96);
// Select Group3 Fax compression for B&W TIFF:
TWAIN_SetTiffCompression(TWPT_BW, TIFF_COMP_CCITTFAX3);
// Set the FillOrder tag to ‘Least Significant Bit First’
#define FILLORDER_LSB2MSB 2
TWAIN_SetTiffTagLong(TIFFTAG_FILLORDER, FILLORDER_LSB2MSB);
// Set the option for ‘byte aligned EOLs’
#define GROUP3OPT_FILLBITS 4
TWAIN_SetTiffTagLong(TIFFTAG_GROUP3OPTIONS, GROUP3OPT_FILLBITS);
// Don’t break images into strips:
TWAIN_SetTiffStripSize(-1);
// Tell EZTwain how many pages will be in the file:
TWAIN_SetOutputPageCount(1);
DIB_WriteToFilename(hdib, “classF.tif”);

Page 99

http://www.ietf.org/rfc/rfc2301.txt

EZTwain Pro User Guide

Functions - PDF Specific

PDF_SetTitle
PDF_SetAuthor
PDF_SetSubject
PDF_SetKeywords
PDF_SetCreator
PDF_SetProducer
int PDF_SetTitle(string pzText)
int PDF_SetAuthor(string pzText)
int PDF_SetSubject(string pzText)
int PDF_SetKeywords(string pzText)
int PDF_SetCreator(string pzText)
int PDF_SetProducer(string pzText)

These functions set the value of standard keys in the document information
dictionary of the next PDF file. These apply only to the next PDF file written by
EZTwain, and when EZTwain finishes writing a PDF file, it forgets (clears) these
values.

EZTwain defaults both ‘Creator’ and ‘Producer’ to “EZTwain Pro n.nnbn using EZPdf
n.nn”

PDF_DocumentProperty
String PDF_DocumentProperty(string Filename, string Property)

Read the specified property (from the document information dictionary) of the
specified PDF file and return it. These are the same document properties written to
PDF files by the functions PDF_SetTitle, PDF_SetAuthor, and so on.

In languages with 'char pointers' the return value is a pointer to an ephemeral
internal buffer that should be copied immediately.

Valid property names are:

Title Author Subject Keywords Creator Producer

Case is significant, use the exact property strings above.

In case of any failure or error, the return value will be the empty string (“”) and an
error will be recorded which as usual can be displayed with TWAIN_ReportLastError,
examined with TWAIN_LastErrorCode, and so on.

Page 100

EZTwain Pro User Guide

PDF_GetDocumentProperty
int PDF_GetDocumentProperty(

string Filename, string Property,
char *buffer, int buflen)

Like PDF_DocumentProperty, but the property's value string is copied into the buffer.
If buflen = 0, the buffer is not touched – in fact buffer can be NULL.
If buflen > 0, up to buflen-1 bytes of the property value string are copied into the
provided buffer, followed by a NUL(0) byte. Note: The return value is the true full
length of the property value string found in the file, regardless of the value of buflen.

PDF_SetCompression
BOOL PDF_SetCompression(int pt, int comp)
int PDF_GetCompression(int pt)

Set or query the compression algorithm to use when images of the specified pixel
type are written to PDF.
Special cases:

pt=-1 means all applicable pixel types.
comp=-1 means default compression for the pixel type.

Thus PDF_SetCompression(-1,-1) resets the compression for all pixel types to the
default.

For pixel types codes and definitions, see EZTwain Pixel Types, page 44.

PDF Compression Choices

Constant Name Value Compression Algorithm Applies to
COMPRESSION_DEFAULT -1 Default for pixel type. all
COMPRESSION_NONE 1 No compression all
COMPRESSION_FLATE 5 Flate – a 'zip' compression all
COMPRESSION_JPEG 7 JPEG, also called DCT. gray, RGB

PDF_SelectPageSize
BOOL PDF_SelectPageSize(int nPaper)

Designates the page size for subsequent PDF output. See Standard Paper Sizes, page
136. By default, the PDF output page size is PAPER_NONE which means when an
image is written to PDF, it is placed on a page that is the same size as the image.
Images of unknown size (0 DPI) or abnormally small DPI, are arbitrarily reinterpreted
as being 100 DPI. If you select a standard paper size, each image subsequently
written to PDF is placed on a page of that size, and the image is reduced
proportionally, if necessary, to fit on the page.

You can return to the default setting at any time by calling PDF_SelectPageSize with
an argument of PAPER_NONE.

Page 101

EZTwain Pro User Guide

PDF_SelectedPageSize
int PDF_SelectedPageSize()

Returns the current page size for PDF output. See PDF_SelectPageSize above.

PDF_DrawText
PDF_DrawText(double x, double y, string text)

Draw the specified text into the next PDF page that is written, at coordinates (x,y) on
the page. Normally this function is used to draw text on a page that consists of a
single image, such as a scanned page. In this case, the coordinates x and y are in
pixels relative to the top-left of the image.

PDF_SetTextVisible
PDF_SetTextVisible(BOOL bVisible)

Sets the visibility of the text drawn by subsequent PDF_DrawText calls.

PDF_DrawInvisibleText
PDF_DrawInvisibleText(double x, double y, string text)

Like PDF_DrawText, but always draws the text in invisible mode, i.e. as hidden text.
Does not change the text visibility mode.

Page 102

EZTwain Pro User Guide

PDF Encryption / PDF Passwords

Starting with release 3.30, EZTwain Pro can write and read back encrypted,
password-protected PDF files, in accordance with the PDF 1.4 specification.

A PDF file can be protected with a user password, an owner password, or both. In
theory, a user must present one of the passwords to gain access to the contents of
the file. Quoting from PDF Reference, Third Edition (PDF 1.4):

A PDF document can be encrypted (PDF 1.1) to protect its contents from
unauthorized access. Encryption applies to all strings and streams in the
document’s PDF file, but not to other object types such as integers and boolean
values, which are used primarily to convey information about the document’s
structure rather than its content. Leaving these values unencrypted allows
random access to the objects within a document, while encrypting the strings
and streams protects the document’s substantive contents.

The encryption used by this feature, a 40-bit RC4 encryption, while not weak, is not
particularly strong by current standards. For more information and technical details,
please refer to the PDF Reference, or to the many sources on the web.

The expected behavior of PDF reading programs (such as Acrobat Reader or Foxit
Reader) is described this way in the PDF Reference:

If a user attempts to open an encrypted document that has a user password,
the viewer application should prompt for a password. Correctly supplying
either password allows the user to open the document, decrypt it, and display
it on the screen. If the document does not have a user password, no password
is requested; the viewer application can simply open, decrypt, and display the
document. Whether additional operations are allowed on a decrypted document
depends on which password (if any) was supplied when the document was
opened and on any access restrictions that were specified when the document
was created:

• Opening the document with the correct owner password (assuming it is not
the same as the user password) allows full (owner) access to the document.
This unlimited access includes the ability to change the document’s passwords
and access permissions.

• Opening the document with the correct user password (or opening a
document that does not have a user password) allows additional operations to
be performed according to the user access permissions specified in the
document’s encryption dictionary.

When EZTwain functions are called to read an image or other content from an
encrypted PDF file, they follow the guidelines given above with one difference:
EZTwain first checks to see if the application has supplied a password using the
PDF_SetOpenPassword function below. If so, that password is used exactly as if the
user had entered it at a password prompt. Otherwise, if the PDF has a user
password, the user is prompted for a password. If the supplied password matches
either the user or owner password of the document, the document is opened and the

Page 103

EZTwain Pro User Guide

requested content is retrieved. EZTwain Pro does not and cannot enforce any access
restrictions.

Encryption and Appending to an Existing PDF
When appending to an existing PDF, EZTwain requires that the encryption (if any) of
the new data being written matches that of the existing file.

A. If the existing file is not encrypted, the appended new data may not be encrypted.

B. If the existing file is encrypted, then there are two sub-cases:

1. If the application has set UserPassword or OwnerPassword, the password or
passwords must validate against the existing PDF. If they do, the new
appended material is encrypted to match the existing PDF contents.

2. If no encryption password has been set by the application, the user is
prompted for a password (as if the existing PDF was being opened for input).
If that password validates against the existing PDF, then the new appended
material is encrypted to match the existing PDF contents.

If any password supplied by the application or the user does not validate against the
existing PDF, the attempted append is aborted without any effect on the file, and the
calling function returns an error, probably EZTEC_PDF_PASSWORD.

PDF_SetOpenPassword
PDF_SetOpenPassword(string sPass)

Sets the password to be used to open encrypted PDF files. When EZTwain is asked
to read content (usually an image) from an encrypted PDF, if the open password has
been set with this function, that password is used to attempt to open the PDF, as if
the user had entered it at a password prompt. If no password has been defined
using this function, then the PDF read routines follow the guidelines quoted above
from the PDF Reference.

PDF_SetUserPassword
PDF_SetUserPassword(string sPass)

Specify the user password for the next PDF file to be written. Setting a non-empty
password for a PDF file causes that PDF to be encrypted using the standard
encryption of PDF 1.4 as discussed above. When EZTwain completes writing a PDF
file, this password is cleared to the empty string.

PDF_SetOwnerPassword
PDF_SetOwnerPassword(string sPass)

Define an owner password for the next output PDF file. Setting a non-empty
password for a PDF file causes that file to be encrypted.

When a PDF file is completed and closed, the owner password is cleared.

Page 104

EZTwain Pro User Guide

PDF_SetPermissions / PDF_GetPermissions
PDF_SetPermissions(long nPermMask)
long PDF_GetPermissions()

Set or Get the access permissions mask to be written into the next output PDF file.
This mask asks PDF viewer programs to restrict certain activities by the user, beyond
simply opening and viewing the file.

 Permissions are only written if you set a user or owner password.
 It is a permission mask – 1 bits mean 'allow', 0 bits mean 'prevent'.
 Acrobat honors these restrictions, but other PDF readers may not.
 The permission mask you set applies only to the next PDF file written.
 The default permissions mask is 'allow everything' (-1)
 Setting a mask of 0 means 'prevent everything preventable'.

You can use bitwise operations, or +/- to combine these constants, for example, to
disallow copying text and graphics from the file:'

 PDF_SetPermissions(PDF_PERMIT_ALL - PDF_PERMIT_COPY)

Bit Value Named Constant Operation (permitted if bit is set)
1 1 (unused)
2 2 (unused)
3 4 PDF_PERMIT_PRINT printing the document
4 8 PDF_PERMIT_MODIFY making changes, other than notes & form

fields
5 16 PDF_PERMIT_COPY copying or extracting content
6 32 PDF_PERMIT_ANNOTS adding or changing comments or form

fields
all -1 PDF_PERMIT_ALL All of the above

Page 105

EZTwain Pro User Guide

PDF/A – ISO 19005

PDF/A is a file format, a proper subset of Adobe PDF 1.4, defined by international
standard ISO 19005-1 in 2005. It was created to facilitate the long-term storage of
digital documents. Quoting from the Introduction to that standard:

“The primary purpose of this part of ISO 19005 is to define a file format based on PDF,
known as PDF/A, which provides a mechanism for representing electronic documents in
a manner that preserves their visual appearance over time, independent of the tools and
systems used for creating, storing or rendering the files.”

For an overview and answers to frequently asked questions about PDF/A, see:
http://www.aiim.org/documents/standards/PDF-A/19005-1_FAQ.pdf

As a proper subset of PDF 1.4, PDF/A files should be readable by any PDF reader
which conforms to PDF 1.4 or higher.

PDF/A-1 files must include:

 Embedded fonts
 Device-independent color
 XMP metadata

PDF/A-1 files may not include:

 Encryption
 LZW Compression
 Embedded files
 External content references
 PDF Transparency
 Multi-media
 JavaScript

The published PDF/A-1 standard may be purchased directly from ISO or from
national standards bodies around the world, such as ANSI (the American National
Standards Institute).

PDF_SetPDFACompliance
PDF_GetPDFACompliance
BOOL PDF_SetPDFACompliance(int nLevel)
int PDF_GetPDFACompliance()

Set or get the PDF/A compliance level.

Level 0 is 'no particular compliance'
Level 1 tells EZTwain to write PDF files that conform to ISO 19005-1 Level B.

Page 106

http://www.ansi.org/
http://www.iso.org/
http://www.aiim.org/documents/standards/PDF-A/19005-1_FAQ.pdf

EZTwain Pro User Guide

Functions – File Uploading

Overview
EZTwain Pro provides some basic services for uploading one or more images to a
webserver, using the HTTP ‘POST’ command. The upload functions emulate the HTTP
handshake produced by a web browser when a user submits a form containing a file-
selection control. However using the EZTwain UPLOAD feature, no browser is
required and there is no user interaction.

This feature of EZTwain Pro is optional - it is implemented in the EZT4Curl.dll, which
you may omit from your software configuration if you do not need uploading
services. As its name suggests, EZT4Curl.dll is a custom build of the highly
respected open-source libcURL library by Daniel Stenberg.

UPLOAD_IsAvailable
BOOL UPLOAD_IsAvailable()

Returns True(1) if uploading services are available, False(0) otherwise. Currently
this means that the EZT4Curl.dll has been found and loaded successfully, see the
overview comments.

UPLOAD_Version
int UPLOAD_Version()

Returns the version number of the upload services module, EZT4Curl.dll, as an
integer: major version * 100 + minor version. For example at the time of this
writing, this function returns 715 which signifies EZT4Curl version 7.15.

UPLOAD_MaxFiles
int UPLOAD_MaxFiles()

Returns the maximum number of files that can be uploaded in one upload operation.
At the time of this writing, this function returns 999.

Page 107

EZTwain Pro User Guide

UPLOAD_AddFormField
BOOL UPLOAD_AddFormField(string name, string value)

Set a form field to a value for the next upload. The name of the field must be
expected by the page/script you upload to. All fields set with this function are
discarded and forgotten after the upload that uses them.

This function returns True if successful, False otherwise. It can fail if more than 32
fields are defined prior to an upload, or if either argument is NULL. A successful
return means only that the field was recorded, not that it was sent to or received by
the server.

For example, suppose you have been uploading scanned documents to your server
using a web form like this:

 <form name="form1" method="post" action="upload.php"
enctype="multipart/form-data">
 Vendor ID: <input type="text" name="vendor id">

 File to upload:
 <input type="file" name="file">

 <input type="submit" name="Submit" value="Submit">
 </form>

You might replace this form with an automatic upload of a scanned document with
code similar to this:

 UPLOAD_AddFormField("vendor id", "1290331")
 UPLOAD_DibToURL(hdib, "http://eztwain.com/eztx/upload.php",
"file.pdf", "file")

Page 108

EZTwain Pro User Guide

UPLOAD_AddHeader
BOOL UPLOAD_AddHeader(string header)

Add the specified line to the HTTP header of the next upload. This can be used, for
example, to send a cookie or a pragma to the server. This allows you to tinker with
the headers sent by EZTwain Pro.

UPLOAD_AddCookie
BOOL UPLOAD_AddCookie(string cookie)

Add a cookie line to the next HTTP upload.
Often used to provide session id's, for example:
 UPLOAD_AddCookie("ASP.NET_SessionID=" & strSessionID)
 or
 UPLOAD_AddCookie("JSESSIONID=" & strSessionID)

UPLOAD_EnableProgressBar
UPLOAD_IsEnabledProgressBar

UPLOAD_EnableProgressBar(BOOL bEnable)
BOOL UPLOAD_IsEnabledProgressBar()

Enable or disable – that is, show or hide - the progress-bar that appears during
uploads. The default state of this setting is enabled (True)

Page 109

EZTwain Pro User Guide

UPLOAD_DibToURL
UPLOAD_DibsToURL
UPLOAD_DibsSeparatelyToURL
UPLOAD_FilesToURL
int UPLOAD_DibToURL(HDIB hdib, string url, string filename,
string field)
int UPLOAD_DibsToURL(HDIB ahdib[], int n, string url, string
filename, string field)
int UPLOAD_DibsSeparatelyToURL(HDIB ahdib[], int n, string url,
string filename, string field)
int UPLOAD_FilesToURL(string files, string url, string field)

Upload an image, a set of images, or a set of files to a script on a server, emulating a
form being submitted from a browser via HTTP-POST.

Parameters
hdib handle to image to upload
ahdib address or reference to array of image handles
n number of images to take from ahdib
url the receiving script as a URL. For example:

http://www.eztwain.com/upload.php
filename the (pretended) name of the uploaded file. This is not the name of an

actual file! The images to be uploaded are collected into a temporary
file, and POSTed to the server: The server is told that it is receiving a
file of this name. The extension on this filename determines the format
of the uploaded file: .tif for TIFF format, .jpg for JPEG format, and so
on.

files A string containing one or more filenames, separated by semicolons (;)
or vertical bars (|) e.g. “c:\file1.jpg;c:\file2.tif”

field the name of the file-upload field on the form. Some scripts require a
specific field name. When multiple files are being sent to the server,
the value of field is modified by appending “1”, “2”, etc. to it.

Operation

All of these functions have in common that they emulate a web browser submitting
to a server a multipart form with one or more files attached. The UPLOAD_Dib...
functions do not actually read or create the named files – they just send the data to
the server as if such a file was being uploaded. On the other hand,
UPLOAD_FilesToURL expects to find the specified file or files on the local disk, and it
uploads their contents and sends along their names.

A call to UPLOAD_DibToURL(hdib, http:server/script, filename, field) looks to the
server script as if the user had browsed to a page on server, viewed the following
form, selected a local file named filename and submitted the form:

Page 110

EZTwain Pro User Guide

<form name="form1" method="post" action="script"
enctype="multipart/form-data">
Upload this file:
 <input type="file" name="field">
 <input type="submit" name="Submit" value="Submit">
</form>

UPLOAD_AddFormField can be used to insert additional fields in the upload form,
UPLOAD_AddHeader can be used to 'tweak' the HTTP header of the upload, and
UPLOAD_EnableProgressBar can be used to hide or suppress the progress bar that
EZTwain Pro normally displays during an upload.

Return values
 0 success (transaction completed)

Note: A success return means only that the data was sent to the
server and a response was received, not that the receiving script
necessarily accepted the submitted file. See DIB_UploadResponse
below.

-1 user cancelled File Save dialog (should never happen!)
-2 could not write temp file - access denied, volume protected, etc.
-3 a) image is invalid (null or invalid DIB handle)

b) The DLL(s) needed to save that format failed to load
c) DIB format incompatible with save format e.g. uploading a B&W

image as JPEG.
d) filename extension isn’t one EZTwain recognizes.

-4 writing data failed, maybe the disk with the temp folder is full?
-5 other unspecified internal error
-1xx libcurl (the library EZTwain uses) returned error code xx

For example:
-106 Could not resolve host
-107 Couldn't connect
-126 (UPLOAD_FilesToURL only) The specified files could not be opened and

read.
-155 Connection was aborted.

Page 111

EZTwain Pro User Guide

Server Response

These functions deal with the text returned by the server in response to an UPLOAD
operation such as UPLOAD_DibToURL. EZTwain collects and stores the text returned
by the server in response to the last upload, up to an implementation-defined limit,
currently around 12000 bytes.

UPLOAD_ResponseLength
int UPLOAD_ResponseLength()

UPLOAD_ResponseLength returns the number of characters returned by the server to
the last Upload request, up to the maximum EZTwain can store.

UPLOAD_ClearResponse
void UPLOAD_ClearResponse()

UPLOAD_ClearResponse clears the stored response text. You usually don't need to
call UPLOAD_ClearResponse, all the UPLOAD functions call it when they start.

UPLOAD_Response
string UPLOAD_Response()

UPLOAD_Response returns the text received from the server/script, in response to
the last upload. Assume that this string can be any length and code defensively: Use
UPLOAD_ResponseLength if necessary to preallocate storage. This will be the empty
string before any upload, and after an upload that returns a negative status code. If
you language permits, we recommend using UPLOAD_Response rather than
UPLOAD_GetResponse.

UPLOAD_GetResponse
void UPLOAD_GetResponse(string s)

UPLOAD_GetResponse copies the last upload server response into a string
parameter. This text is never more than 1024 characters long - If you are using
UPLOAD_GetResponse, please pre-allocate your string variable accordingly.

Page 112

EZTwain Pro User Guide

Functions – Image Viewing

TWAIN_ViewFile
int TWAIN_ViewFile(string pszFile)

Opens an image viewer window and displays the specified image file in it. The
window can be resized by the user. If the file contains multiple pages/images,
controls are displayed for stepping between the pages. The filename is displayed as
the title/caption of the window. By default, the dialog is modal with an [OK] button.

The operation of this function can be modified using TWAIN_SetViewOption below.

Return values:
-1 error creating the window or opening/reading the file
 0 user cancelled the window (by clicking the close box)
 1 user clicked the OK button.

Caution: EZTwain cannot generally read PDF files generated or modified by other
software.

DIB_View
int DIB_View(HDIB hdib, string pzTitle, HWND hwndParent)

Display the given image in a viewer window with the given title.
If hdib is 0 (NULL), the viewer window still opens but no image is displayed.
hwndParent is the window handle of the parent window - if you use 0 (NULL) for this
parameter, EZTwain uses the active window of the application if there is one, or no
parent window.
By default, the window contains only an [OK] button, the style of the window is a
resizable dialog box, the dialog is modal, and this function does not return until the
user closes the dialog or clicks the [OK] button.

The operation of this function can be modified using DIB_SetViewOption below.

DIB_SetViewImage
BOOL DIB_SetViewImage(HDIB hdib)

If the image viewer is open, this displays the specified image in the viewer window.
To use this function, first call DIB_SetViewOption(“modeless”, “true”) and then
DIB_View(0, “<title>”, 0) This opens the image viewer window with no current
image. Then you can call DIB_SetViewImage repeatedly to display images, and
DIB_ViewClose when you are done.

DIB_IsViewOpen/TWAIN_IsViewOpen
BOOL DIB_IsViewOpen()

Page 113

EZTwain Pro User Guide

Returns TRUE(1) if the viewer window is open, FALSE(0) otherwise. Normally this is
only possible if the viewer is operating as a modeless dialog - set
DIB_SetViewOption.

DIB_ViewClose/TWAIN_ViewClose
BOOL DIB_ViewClose()

Close the image viewer window if it is open. If it is not open, do nothing.

Page 114

EZTwain Pro User Guide

DIB_SetViewOption/TWAIN_SetViewOption
BOOL DIB_SetViewOption(string option, string value)

Set the value of an option related to TWAIN_ViewFile or DIB_View. Supported
options and values are listed below.

Image Viewer Options2

Option Value Effect
“modal” “true”1,3 Operate the viewer window as a modal dialog.

Do not return from DIB_View or TWAIN_ViewFile
until the user closes the viewer window.

“modal” “false” 4 Operate the viewer window as a modeless
dialog. When DIB_View or TWAIN_ViewFile is
called, display the image in the viewer window
and return immediately, leaving the viewer
window open.

“modeless” “true” 3 same as “modal”,”false” - viewer is modeless.
“modeless” “false” 1,4 same as “modal”,”true” - viewer is modal.
“position” “x,y”

or
”x,y,w,h”

Set the position of the viewer window. X,y,w and
h can be integers which are interpred as pixels.
If a number is followed by a percent-sign (%) it
is interpreted as that percent of the available
screen width or height. w and h are optional.

“x” or “left” “n” or “n%” Set the left (x) coordinate of the viewer. As with
position, n means pixels from the left side of the
work area, n% means n% of the screen width.

“y” or “top” “n” or “n%” Set the top (y) coordinate of the viewer.
“width” “n” or “n%” Set the width of the viewer window.
“height” “n” or “n%” Set the height of the viewer window.
“size” “w,h” Set the width and height of the viewer window.
“visible” “true” 1,3 Show the viewer dialog, when it is modeless.
“visible” “false” 4 Hide the viewer dialog, when it is modeless.
“reset” (ignored) reset to default value all options that have one.
“title” “any string” Set the title bar text of the viewer window.
“ok.visible” “true” 1,3 Show the [OK] button in the viewer.
“ok.visible” “false” 4 Don’t show the [OK] button.
“cancel.visible” “true” 3 Show the [Cancel] button in the viewer.
“cancel.visible” “false” 1,4 Don't show the [Cancel] button.
“print.visible” “true” 3 Show the [Print...] button in the viewer
“print.visible” “false” 1,4 Don't show the [Print...] button.

1: Default value.
2. We show all options and values with quotes because they are strings. Your
language may use another way of quoting strings.
3: In place of “true” you may use: “1”, “yes”, “vrai”, “oui”, “si”, or “ja”.
4: In place of “false” you may use: “0”, “no”, “faux”, “non”, or “nein”.

Page 115

EZTwain Pro User Guide

Functions – Error Handling & Logging

TWAIN_SuppressErrorMessages
int TWAIN_SuppressErrorMessages (int nSuppress)

Enable or disable EZTwain error messages to the user.
Returns the previous state of the flag.
When nSuppress = 0, error messages are displayed.
When nSuppress <> 0, error messages are suppressed.
By default, error messages are displayed.
Note that EZTwain cannot prevent message boxes displayed by TWAIN or DSs.

TWAIN_ReportLastError
void TWAIN_ReportLastError(string pzMsg)

Like TWAIN_ErrorBox, but if some details are available from TWAIN about the last
failure, they are included in the message box. This function uses
TWAIN_LastErrorText to find out about the last error – see below.

TWAIN_LastErrorCode
int TWAIN_LastErrorCode(void)

Return the most recent EZTwain error code, one of the EZTEC_ codes – See the
EZTwain declaration file for your programming language, or refer to eztwain.h.

TWAIN_LastErrorText / TWAIN_GetLastErrorText
void TWAIN_GetLastErrorText(LPSTR pzMsg)
string TWAIN_LastErrorText(void)

Returns a text string describing the last error encountered by EZTwain. In other
words, this function is like TWAIN_LastErrorCode, but it translates the error into a
human-readable (English) string. For example, if you try to scan from a device that
is disconnected, this function may return something like: "Could not open TWAIN
device: EPSON TWAIN 5\n(check power and connections.)". This string may contain
end-of-line characters. The returned string will not exceed 512 (ASCII) characters
long – if you use TWAIN_GetLastErrorText, make sure you pre-allocate the variable
to have enough room.

TWAIN_RecordError
void TWAIN_RecordError(int code, string note)

Set the internal EZTwain error code, if it is not set already.
This sets the error information that is reported by LastErrorCode, LastErrorText,
ReportLastError, and so on. Normally EZTwain records errors internally, but in
special circumstances an application might need record an error 'as if' it was an
EZTwain internal error.

The error code can be cleared by TWAIN_ClearError, and a few other functions also
clear it.

Page 116

EZTwain Pro User Guide

TWAIN_ClearError
void TWAIN_ClearError(void)

Set the EZTwain internal error code to EZTEC_NONE and clears the last error text.

TWAIN_GetResultCode
unsigned TWAIN_GetResultCode(void)

Return the result code (TWRC_xxx) from the last triplet sent to TWAIN

TWAIN_GetConditionCode
unsigned TWAIN_GetConditionCode(void)

Return the condition code from the last triplet sent to TWAIN. (To be precise, from
the last call to TWAIN_DS) If no Source is open, return the condition code of the
source manager.

TWAIN_ErrorBox
void TWAIN_ErrorBox(string pzMsg)

Post an error message box with an OK button. The string argument is used as the
text of the box, and the application title (see TWAIN_RegisterApp and
TWAIN_SetAppTitle) is used as the title or caption of the box. If messages are
suppressed (see below) this function does nothing.

Page 117

EZTwain Pro User Guide

Logging

TWAIN_LogFile
void TWAIN_LogFile(int fLog)

EZTwain can write a quite detailed log of its activity, including every TWAIN call it
makes and the result. Log output goes by default to c:\eztwain.log. if that
directory is writable, otherwise to %TEMP%\eztwain.log
Functions below can change the name and/or directory for logging.

TWAIN_LogFile(0) close log file and turn off logging
TWAIN_LogFile(1) open log file (if not already) and start logging.

If logging is already turned on, TWAIN_LogFile(1) flushes the logfile to disk so prior
output won’t be lost in a subsequent crash.

TWAIN_WriteToLog
void TWAIN_WriteToLog(string pzText)

Write text to the EZTwain log file. If the text does not end with an end-of-line
character, one is added. If logging is turned off, this call has no effect.

TWAIN_SetLogName
BOOL TWAIN_SetLogName(string pzName)

Set the filename or path & filename of the EZTwain log file.
If there is a log file open, it is closed, renamed and re-opened.
The default extension is ".log", the default log filename is "eztwain.log".

You can specify a fully-qualified filename, which changes both the folder and
filename for logging:

 TWAIN_SetLogName("c:\temp\scan2tape.log")

TWAIN_LogFileName
string TWAIN_LogFileName(void)

Return the (fully qualified) file path and name for logging.

TWAIN_SetLogFolder
void TWAIN_SetLogFolder(string pzFolder)

Set the directory that will contain the log file.

Calling this with the empty string resets the log folder to the default (c:\ if it is
writable, otherwise %TEMP%) TWAIN_SetLogFolder(“c:\ top\middle\logs”) will
create the ‘logs’ folder if necessary, but will not create the ‘top’ or ‘middle’ folders.
If there is a log file open, it is closed, moved and re-opened.

Page 118

EZTwain Pro User Guide

Functions – TWAIN State
To work with TWAIN, you must have some understanding of the TWAIN State. In
TWAIN, a conversation with a device moves up and down a ladder of 7 distinct
states. In each state, certain operations are permitted and others are invalid, and
certain operations or events indicate that the conversation has moved into another
state.

TWAIN States

State EZTwain Symbolic Name Description
1 TWAIN_PRESESSION Source Manager not loaded
2 TWAIN_SM_LOADED Source Manager loaded
3 TWAIN_SM_OPEN Source Manager open
4 TWAIN_SOURCE_OPEN Source open for negotiation
5 TWAIN_SOURCE_ENABLED Source enabled to acquire
6 TWAIN_TRANSFER_READY Image ready to transfer
7 TWAIN_TRANSFERRING Image in transit

EZTwain carefully tracks the TWAIN State, and hides a lot of the details of managing
the state, but not all. The following group of functions are the ones concerned with
directly reading and modifying the TWAIN State.

TWAIN_State
int TWAIN_State(void)

Returns the State (see above) of the TWAIN conversation.

TWAIN_IsDone
BOOL TWAIN_IsDone()

Returns FALSE(0) if there is a device open and it is in a state where more scans are
available or could be requested. Otherwise returns TRUE (1).

Informally, TRUE means 'stop asking for images' and FALSE means something like 'It
would be appropriate at this time to request another image.'
I know, it sounds bizarre, but that's actually how TWAIN works.

This function is designed to be the test at the bottom of a do-until loop:

Page 119

EZTwain Pro User Guide

 If TWAIN_OpenDefaultSource() Then
 TWAIN_SetMultiTransfer(1)
 Do
 TWAIN_AcquireToFilename(0, NextFileName())
 Until TWAIN_IsDone()
 TWAIN_CloseSource()
 End If

TWAIN_LoadSourceManager
int TWAIN_LoadSourceManager(void)

Finds and loads the TWAIN Source Manager.
If Source Manager is already loaded, does nothing and returns TRUE(1).
This can fail if TWAIN Source Manager is not installed (in the right place), or if the
library cannot load for some reason (insufficient memory?) or if it has been
corrupted.

For example, in Windows Server 2008 R2, the TWAIN Source Manager is not installed
by default, it is part of something called the Desktop Experience Pack.

TWAIN_OpenSourceManager
int TWAIN_OpenSourceManager(HWND hwnd)

Opens the Source Manager, if not already open.
If the Source Manager is already open, does nothing and returns TRUE.
This call will fail if the Source Manager is not loaded.

TWAIN_OpenDefaultSource
int TWAIN_OpenDefaultSource(void)

This opens the source selected in the Select Source dialog.
If some source is already open, does nothing and returns TRUE.
Will load and open the Source Manager if needed.
If this call returns TRUE, TWAIN is in State 4 (TWAIN_SOURCE_OPEN)

TWAIN_OpenSource
int TWAIN_OpenSource(string pzName)

Opens the Source with the given name.
If that source is already open, does nothing and returns TRUE. If another source is
open, closes it and attempts to open the specified source. Will load and open the
Source Manager if needed.
If this call returns TRUE, TWAIN is in State 4 (TWAIN_SOURCE_OPEN)

TWAIN_EnableSource
int TWAIN_EnableSource(HWND hwnd)

Enables the open Source for image acquisition. ‘Enabled’ in TWAIN parlance means
that the Source has permission to begin acquiring images. Until it is enabled, a
Source will never begin any image acquisition, nor will it offer an image for transfer.

Page 120

EZTwain Pro User Guide

This call returns TRUE(1) if it leaves the Source in State 5 or higher. A return of
FALSE(0) indicates that either the Enable failed, or that the Source asked to be
closed immediately! If the Source is already enabled when you make this call, it
does nothing and returns TRUE.

By default the Source is asked to display its user interface, but this can be controlled
with TWAIN_SetHideUI . If a Source is enabled without its user interface, it should if
possible immediately offer to transfer an image – on return from
TWAIN_EnableSource, the TWAIN_State() should be 6 (Transfer Ready.)

By default the parent window is not affected, but this can be changed using
TWAIN_DisableParent .

TWAIN_DisableSource
int TWAIN_DisableSource(void)

Disables the open Source, if any.
This closes the Source's user interface.
If there is not an enabled Source, does nothing and returns TRUE.

TWAIN_CloseSource
int TWAIN_CloseSource(void)

Closes the open Source, if any.
If the Source is enabled, disables it first.
If there is not an open Source, does nothing and returns TRUE.

TWAIN_UnloadSourceManager
int TWAIN_UnloadSourceManager(void)

Closes and unloads the TWAIN Source Manager. If necessary, it will abort transfers,
close the open Source if any, and close the Source Manager.
If successful, it returns 1 (TRUE) otherwise 0 (FALSE).

TWAIN_EndXfer
int TWAIN_EndXfer(void)

Only valid in State 7, it signals the DS to go to either State 6 if it has more transfers
ready, or to State 5 if it does not.

It would be very unusual to need to call this: The Acquire functions call this after
each transfer. The other state-changing functions will call this if they find
themselves in State 7 and need to move down.

TWAIN_AbortAllPendingXfers
int TWAIN_AbortAllPendingXfers(void)

Page 121

EZTwain Pro User Guide

Functions – Capability

TWAIN_SetXferCount
int TWAIN_SetXferCount(int nXfers)

Tell the Source the number of images the application will accept.
nXfers = -1 means any number (the default, when a device is opened.)
Returns: 1 for success, 0 for failure.

TWAIN_GetCurrentUnits
int TWAIN_GetCurrentUnits(void)

Return the current unit of measure: inches, cm, pixels, etc. – see list below. Many
TWAIN parameters such as resolution are set and returned in the current unit of
measure. There is no error return - in case of error it returns 0 (TWUN_INCHES)

TWAIN unit codes (from twain.h)
#define TWUN_INCHES 0
#define TWUN_CENTIMETERS 1
#define TWUN_PICAS 2
#define TWUN_POINTS 3
#define TWUN_TWIPS 4
#define TWUN_PIXELS 5

TWAIN_SetUnits
int TWAIN_SetUnits(int nUnits)

Set the current unit of measure for the source. Common unit codes are given above.
• Most sources do not support all units, some support only inches. Some

cameras support only pixels.
• If you want to get or set resolution in DPI, make sure the current units are

inches, or you might get Dots-Per-Centimeter!

TWAIN_GetPixelType
int TWAIN_GetPixelType(void)

Ask the open device for the current pixel type. See table below.
If anything goes wrong (it shouldn't), this function returns 0 (TWPT_BW).

Page 122

EZTwain Pro User Guide

TWAIN_SetPixelType
int TWAIN_SetPixelType(int nPixType)

Try to set the current pixel type for acquisition.
The source may select this pixel type, but don't assume it will.
This function should be used in place of the older TWAIN_SetCurrentPixelType.

Pixel Type Codes (TWPT_*)

Code TWAIN Name Description
0 TWPT_BW 1-bit per pixel, black and white
1 TWPT_GRAY grayscale, 8 or 4-bit
2 TWPT_RGB RGB color, 24-bit (rarely, 15,16,32-bit)
3 TWPT_PALETTE indexed color (image has a color table) 8 or 4-bit.
4 TWPT_CMY CMY color, 24-bit
5 TWPT_CMYK CMYK color, 32-bit

TWAIN_GetBitDepth
int TWAIN_GetBitDepth(void)

Get the current scanning bit depth, which can depend on the current PixelType.
In theory, bit depth is per color channel e.g. 24-bit RGB has bit depth 8. In practice
a lot of devices return 24 as the bit depth for RGB. If anything goes wrong, this
function returns 0.

TWAIN_SetBitDepth
int TWAIN_SetBitDepth(int nBits)

Try to set the scanning bit depth for the current pixel type.
Note: You should set a PixelType, and then set the bitdepth for that type.

Tip: Some scanners advertise ’12-bit scanning’ or ’14-bit A/D’. Just because this
appears in the scanner specifications does not mean the TWAIN driver supports it,
but if it does, you usually use it by setting BitDepth to 16. EZTwain should do this
automatically, but you may need to also specify Memory Transfer Mode, by calling
TWAIN_SetXferMech.

TWAIN_GetCurrent Resolution
double TWAIN_GetCurrentResolution(void)

Ask the source for the current (horizontal) scanning resolution.
Resolution is in dots per current unit! (See TWAIN_GetCurrentUnits above)
If anything goes wrong (it shouldn't) this function returns 0.0

TWAIN_GetYResolution
double TWAIN_GetYResolution(void)

Returns the current vertical resolution, in dots per *current unit*.
In the event of failure, returns 0.0.

Page 123

EZTwain Pro User Guide

TWAIN_SetResolution/TWAIN_SetResolutionInt
int TWAIN_SetResolution(double dRes)
int TWAIN_SetResolutionInt(int nRes)

Try to set the current resolution for scanning. This call sets both vertical (y) and
horizontal (x) resolution to the same value. See TWAIN_SetXResolution below if you
want to set x and y resolution separately. With scanners if this call succeeds,
subsequent scans will be made at this resolution. Naturally, this will not be useful on
devices that store images ahead of time, like digital cameras. And generally video-
capture devices ignore or reject resolution settings.

Resolution is in dots (samples) per current unit. (See TWAIN_GetCurrentUnits above)
The source may select this resolution, but don't assume it will. Almost all scanners
that scan paper can support 200 DPI and 300 DPI. Beyond that, the specific values
vary quite widely from model to model. To query the values supported by a scanner,
see Appendix 2 - Working with Containers, p 161.

TWAIN_SetXResolution / TWAIN_SetYResolution
int TWAIN_SetXResolution(double dxRes)
int TWAIN_SetYResolution(double dyRes)

Be aware that many scanners will not accept different x and y resolution values -
they will either ignore the different y-resolution value, or they will lock the two
parameters together: Setting either parameter will set both to the same value.

TWAIN_SetContrast
int TWAIN_SetContrast(double dCon)

Try to set the current contrast for acquisition. Contrast is not a required capability,
do not assume a particular scanner supports it.
The TWAIN standard says that the range for this cap is -1000 ... +1000.

TWAIN_SetBrightness
int TWAIN_SetBrightness(double dBri)

Try to set the current brightness for acquisition. Brightness is not a required
capability, do not assume a particular scanner supports it.
The standard range for this cap is -1000 ... +1000 – we have seen other ranges…

Page 124

EZTwain Pro User Guide

TWAIN_SetThreshold
int TWAIN_SetThreshold(double dThresh)

Try to set the threshold (TWAIN: ICAP_THRESHOLD) for black and white scanning.
Legal values for threshold are 0 to 255. Returns TRUE(1) for success, FALSE(0) for
failure.

If a device is not open (TWAIN_State=4) this function will record an error and fail.

How does Threshold work? In B&W scanning mode, you can think of the scanner as
measuring each pixel of the document to get an 8-bit number (0..255) where 0 is the
darkest measurable black, and 255 is the lightest white. When the scanner delivers
the B&W image to your application, pixels that fall below the threshold are set to
black, pixels above the threshold are set to white. Nobody can say what happens to
pixels that are equal to the threshold – don't worry about it!

As you lower the threshold your scanned images tend to become whiter, and as you
raise the threshold the scans tend to become darker.

Field Notes

The TWAIN default threshold value is 128, but that does not mean much: Most
scanners default to a threshold of 128 when they are opened but other scanners
seem to default to a stored value, perhaps the last user-selected value.

This setting usually affects only 1-bit scans i.e. PixelType == TWPT_BW.

This setting applies to document scanners, and perhaps film scanners – it is likely to
be omitted or ignored by cameras and video digitizers.

A few low-cost scanners will accept this setting without error, but then ignore the
value!

As an alternative to setting the scanner threshold, consider scanning in grayscale
(pixel type TWPT_GRAY) and converting the images to B&W in software, using
EZTwain functions such as DIB_SmartThreshold.

TWAIN_GetCurrentThreshold
double TWAIN_GetCurrentThreshold(void)

Try to get the current B&W threshold setting – the value of the ICAP_THRESHOLD
capability. If this fails for any reason, it will return -1. Note: EZTwain *VERSIONS
BEFORE 2.65 RETURNED 128.0*

Page 125

EZTwain Pro User Guide

TWAIN_SetAutoBright
int TWAIN_SetAutoBright(BOOL bOn)

TWAIN_SetLightPath
int TWAIN_SetLightPath(BOOL bTransmissive)

Tries to select transparent or reflective media for scanning.
A parameter of TRUE(1) means transparent media (transparency scanning),
FALSE(0) means reflective media.
A return of TRUE(1) implies success, FALSE(0) means that the Source refused the
request.

TWAIN_SetGamma
int TWAIN_SetGamma(double dGamma)

TWAIN_SetShadow
int TWAIN_SetShadow(double d) // 0..255

TWAIN_SetHighlight
int TWAIN_SetHighlight(double d) // 0..255

Page 126

EZTwain Pro User Guide

Document Feeder Control

TWAIN_HasFeeder
BOOL TWAIN_HasFeeder(void)

Return TRUE(1) if the source indicates it has a document feeder, FALSE(0) otherwise.
You will need to have a device open for this query to work.

TWAIN_IsFeederSelected
BOOL TWAIN_IsFeederSelected(void)

Return TRUE(1) if the document feeder is selected. A device must be open.

TWAIN_SelectFeeder
int TWAIN_SelectFeeder(int fYes)

(Try to) select or deselect the document feeder.
Return TRUE(1) if successful, FALSE(0) otherwise.

TWAIN_IsAutoFeedOn
BOOL TWAIN_IsAutoFeedOn(void)

Return TRUE(1) if automatic feeding is enabled, otherwise FALSE(0).
Make sure the feeder is selected before calling this function.

TWAIN_SetAutoFeed
int TWAIN_SetAutoFeed(int fYes)

(Try to) turn on/off automatic feeding thru the feeder.
Return TRUE(1) if successful, FALSE(0) otherwise.

TWAIN_SetAutoScan
int TWAIN_SetAutoScan(int fYes)

(Try to) turn on/off scan-ahead (CAP_AUTOSCAN).
Returns TRUE(1) if successful, FALSE(0) otherwise.
This is an optional feature supported by some ADF scanners. When enabled, the
scanner will scan pages before they are requested, buffering them in the scanner or
host PC. When disabled, the scanner will not feed and scan a page until the
application asks for it. Used to achieve maximum throughput on ADF scanners.

TWAIN_IsFeederLoaded
BOOL TWAIN_IsFeederLoaded(void)

Return TRUE(1) if there are documents in the feeder.
Make sure the feeder is selected before calling this function.

Page 127

EZTwain Pro User Guide

Controlling Duplex Mode
Many document scanners are capable of duplex scanning – scanning both sides of an
original. Scanning just one side of each page is called simplex scanning.

The way duplex scanning works surprises some people, although it is elegant and
logical: Duplex scanning treats each page as if it were two pages being scanned
single-sided. If you scan 5 pages in duplex mode, the data transfer and the TWAIN
activity is essentially the same as scanning 10 pages in simplex mode.

This means that all duplex scanning is multipage scanning. If you allow duplex
scanning we recommend that you use one of the Multi-image Scanning Functions:
TWAIN_AcquireMultipageFile, TWAIN_AcquireArray, TWAIN_AcquirePagesToFiles, etc.

TWAIN_GetDuplexSupport
int TWAIN_GetDuplexSupport(void)

Query the device for duplex scanning support.
Return values:

0 = no support (or error, or query not recognized)
1 = 1-pass duplex
2 = 2-pass duplex

TWAIN_EnableDuplex
int TWAIN_EnableDuplex(int fYes)

Enable (fYes=1) or disable (fYes=0) duplex scanning.
Returns TRUE(1) if successful, FALSE(0) otherwise.

TWAIN_IsDuplexEnabled
BOOL TWAIN_IsDuplexEnabled(void)

Returns TRUE(1) if the device supports duplex scanning
and duplex scanning is enabled. FALSE(0) otherwise.

Page 128

EZTwain Pro User Guide

Other Settings

TWAIN_HasControllableUI
int TWAIN_HasControllableUI(void)
Return 1 if source claims UI can be hidden (see SetHideUI above)
Return 0 if source says UI *cannot* be hidden
Return -1 if source (pre TWAIN 1.6) cannot answer the question.

TWAIN_SetIndicators
int TWAIN_SetIndicators(BOOL bVisible)

Tell the source to show (hide) progress indicators during acquisition.

TWAIN_SetXferMech / TWAIN_XferMech
int TWAIN_SetXferMech(int mech)
int TWAIN_XferMech(void)

Try to set or get the transfer mode - one of the following:
#define XFERMECH_NATIVE 0
#define XFERMECH_FILE 1
#define XFERMECH_MEMORY 2

Normally you do not need to set this mode – the Acquire functions will select the
transfer mode based on the scan settings and scanner model.

Note: In the unusual case that you want to transfer 16-bit per channel images (16-
bit grayscale or 48-bit color), and assuming your scanner supports it, you should
specify memory transfer mode. Any resulting 'deep' images in DIB format will not be
understood by most software (including Windows) – but most of EZTwain’s DIB_
functions will operate on these deep DIBs, and they can be written to TIFF, which is
about the only image format that can hold them.

TWAIN_SupportsFileXfer
int TWAIN_SupportsFileXfer(void)
Returns TRUE(1) if the open Source claims to support file transfer mode
(XFERMECH_FILE)
This mode is optional. If TRUE, you can use AcquireFile.

Page 129

EZTwain Pro User Guide

TWAIN_SetCompression / TWAIN_Compression
int TWAIN_Compression(void)
int TWAIN_SetCompression(int compression)

Set/Return compression format for image transfer from the source device. See
twain.h for TWCP_xxx values to use with this capability.

The meaning of this capability depends (in theory) on the current transfer mode (see
TWAIN_XferMech above).

If the transfer mode is File, this capability should correspond to the compression that
will be used in the transferred file.

If the transfer mode is Memory, then this is how the incoming buffers of data will be
compressed.

For Native mode transfers, which is the default for most EZTwain Acquire functions,
compression is not supported and will be disabled automatically.

However: TWAIN_AcquireMemory defaults to using Memory transfer mode, and you
can also specify Memory transfer mode for the general Acquire functions, by calling
e.g.

TWAIN_SetXferMech(XFERMECH_MEMORY)

In Memory transfer mode, you can specify a supported compression and EZTwain will
try to transfer images from the scanner using that compression, and will retain the
image data in that compression format even in DIB form. When compressed images
are written to a file format that uses the same compression, EZTwain will (mostly)
write the image to file without decompressing & recompressing it.

All of which means that potentially, if the scanner can deliver JPEG-compressed
images and you are writing scanned images to JPEG (or PDF) files, you can arrange
to move images from scanner to memory to disk in compressed form, with much
lower demand on CPU, RAM, scanner bandwidth and disk bandwidth.

This becomes interesting for grayscale and color images when working with a
scanner that can deliver, say, more than 20-30 images/minute, although the
threshold depends very much on scanner connection, scanning resolution, computer
speed, and disk bandwidth.

B&W images are so much 'lighter' to transfer and process that this optimization is
normally not worth the trouble for them.

Page 130

EZTwain Pro User Guide

Raw Capability Get & Set
Note that ordinarily capabilities can be Set or Reset only in State 4 (Source Open)
and can be read (Get, GetCurrent, GetDefault) only in State 4 or higher.

TWAIN_Get
HCONTAINER TWAIN_Get(unsigned uCap)

Issue a DAT_CAPABILITY/MSG_GET to the open source.
Return a capability 'container' - the 'MSG_GET' value of the capability.
Use CONTAINER_* functions to examine and modify the container object.
Use CONTAINER_Free to release it when you are done with it.
A return value of 0 indicates failure: Call GetConditionCode or ReportLastError.

TWAIN_GetDefault
HCONTAINER TWAIN_GetDefault(unsigned uCap)

Issue a DAT_CAPABILITY/MSG_GETDEFAULT, to get the default value of the specified
capability.

TWAIN_GetCurrent
HCONTAINER TWAIN_GetCurrent(unsigned uCap)

Issue a DAT_CAPABILITY/MSG_GETCURRENT to get the current value of the specified
capability. Caution: A few Sources will not respond to GetCurrent, but only Get –
implying that Get represents the current value.

TWAIN_Set
int TWAIN_Set(unsigned uCap, HCONTAINER hcon)

Issue a DAT_CAPABILITY/MSG_SET to the open source, using the specified capability
and container. Returns 1 (TRUE) if successful, 0 (FALSE) otherwise.

TWAIN_Reset
int TWAIN_Reset(unsigned uCap)

Issue a MSG_RESET, which should reset the specified capability to its default value.
Returns 1 (TRUE) if successful, 0 (FALSE) otherwise.

TWAIN_GetCapBool
BOOL TWAIN_GetCapBool(unsigned cap, BOOL bDefault)

Issue a DAT_CAPABILITY/MSG_GETCURRENT on the specified capability to get the
value as a BOOL.
Returns the capability value if successful, otherwise returns bDefault.

Page 131

EZTwain Pro User Guide

TWAIN_GetCapFix32
double TWAIN_GetCapFix32(unsigned cap, double dDefault)

TWAIN_GetCapUint16
int TWAIN_GetCapUint16(unsigned cap, int nDefault)

TWAIN_SetCapability
int TWAIN_SetCapability(unsigned Cap, double dVal)

Set the value of a capability of unknown type - such as a custom (proprietary)
capability. This is like TWAIN_SetCapOneValue, but you don’t have to look up or
discover the ItemType. Only useful on capabilities that have a simple current value
that is an integer or fractional number. Only valid in State 4.
Return Value: TRUE (1) if successful, FALSE (0) otherwise.
Example:

‘ Tell Canon DR2080 to skip blank pages:
TWAIN_SetCapability(&H8001, 1)

TWAIN_SetCapBool
int TWAIN_SetCapBool(unsigned Cap, BOOL bVal)

Set the value of a capability that has type TWTY_BOOL. Only valid in State 4.
Return Value: TRUE (1) if successful, FALSE (0) otherwise.

TWAIN_SetCapOneValue
int TWAIN_SetCapOneValue(unsigned Cap, unsigned ItemType, long
ItemVal)

Do a DAT_CAPABILITY/MSG_SET, on capability 'Cap' (e.g. ICAP_PIXELTYPE,
CAP_AUTOFEED, etc.) using a TW_ONEVALUE container with the given item type and
value. Use SetCapFix32 for capabilities that take a FIX32 value, use
SetCapOneValue for the various ints and uints. These functions do not support
FRAME or STR items.
Return Value: TRUE (1) if successful, FALSE (0) otherwise.

TWAIN_SetCapFix32 / TWAIN_SetCapFix32R
int TWAIN_SetCapFix32(unsigned Cap, double dVal)
int TWAIN_SetCapFix32R(unsigned Cap, int Num, int Den)

Do a DAT_CAPABILITY/MSG_SET on capability Cap using a TW_ONEVALUE container
of a FIX32 item.
Return Value: TRUE (1) if successful, FALSE (0) otherwise.

Use SetCapFix32 and SetCapFix32R for capabilities that take a FIX32 value.

SetCapFix32R uses the value dVal = Num/Den.
This is useful for languages that make it hard to pass double parameters.

Page 132

EZTwain Pro User Guide

Region of Interest (ROI)
In the jargon of imaging, region-of-interest (ROI) means a particular rectangular
region to be processed, out of a larger image area. If you have used a flatbed
scanner, you have seen this concept in the scanner’s user interface: Within the full
scanning area, you can select a smaller rectangle to scan.

TWAIN_SetRegion
void TWAIN_SetRegion(double L, double T, double R, double B)

This is the most general and powerful function in
EZTwain for selecting a region-of-interest. It will try to
use the region-scanning abilities of the device, but if
the device can’t or won’t scan the specified region,
EZTwain crops each incoming image to the specified
area.

Caution: The parameters are NOT x, y, width and
height – they are left, top, right, and bottom of the
area to scan, measured in the current unit of measure
from the top-left corner of the 'original page'. See the
diagram to the right.

Caution: Some devices (For example, some Fujitsu fi-
series) remember the last paper size selected in their
user interface, and will not accept a region setting
outside that paper size. To avoid this problem, call
TWAIN_SetPaperSize before calling TWAIN_SetRegion.

Example: The following code, with an 8.5” x 11” flatbed scanner, will scan a 3” x 4”
square towards the center of the platen, in color at 300dpi, and save it as a TIFF file:

If (TWAIN_OpenDefaultSource()) {
 TWAIN_SetUnits(TWUN_INCHES);
 TWAIN_SetResolution(300);
 TWAIN_SetPixelType(TWPT_RGB);
 TWAIN_SetRegion(2.0, 3.0, 5.0, 7.0);
 // scan starts 2" from left side, 3" from top
 // scan stops 5" from left side, 7" from top.
 // scan is 5.0-2.0 = 3" wide and 7.0-3.0 = 4" high
 TWAIN_SetHideUI(1);
 TWAIN_AcquireToFilename(0, "myfile.tif");
}

TWAIN_ResetRegion
void TWAIN_ResetRegion(void)

Resets the region set with TWAIN_SetRegion, so that EZTwain stops trying to set or
crop to a region of interest.

Page 133

EZTwain Pro User Guide

TWAIN_SetImageLayout
int TWAIN_SetImageLayout(double L, double T, double R, double B)

Lower-level region-of-interest (ROI) function. Set the area to scan, using
DAT_IMAGELAYOUT/MSG_SET.
Note: Even though the TWAIN standard lists this feature as required most cameras
ignore it, along with some ADF scanners and other devices. This call is only valid in
State 4 that is, when a device is open.

L, T, R, B = distance to left, top, right, and bottom edge respectively of area to scan,
measured in the current unit of measure from the top-left corner of the 'original
page' (TWAIN 1.6 8-22). See the warning below about units.

Returns TRUE (1) if successful, FALSE (0) otherwise. Common causes of failure:
1. Not in State 4 / Source open. See TWAIN_OpenDefaultSource.
2. The device does not support image layout.
3. Incorrect parameters – see the example below.

Do not assume that image layout is pixel-precise. Many devices deliver images that
differ from the requested image layout by a few pixels in width or height.

In theory the numbers used in image layout are measurements in the current unit
of measure (see TWAIN_GetCurrentUnits / TWAIN_SetUnits.)

In practice quite a few TWAIN devices ignore the unit setting and always measure
image layout in inches.

TWAIN_GetImageLayout /
TWAIN_GetDefaultImageLayout
int TWAIN_GetImageLayout(double *L, double *T, double *R, double
*B)
int TWAIN_GetDefaultImageLayout(double *L, double *T, double *R,
double *B)

Get the current or default (power-on) area to scan.
See the warning above about units.
This call is valid in States 4-6.
Return value: 1 = success, 0 = failure.

TWAIN_ResetImageLayout
int TWAIN_ResetImageLayout(void)

Reset the scan area to the default (power-on) settings.
This call is only valid in State 4.
Return value: 1 = success, 0 = failure.

Page 134

EZTwain Pro User Guide

TWAIN_SetFrame
int TWAIN_SetFrame(double L, double T, double R, double B)

This is an alternative way to set the scan area.
Some scanners will respond to this instead of SetImageLayout.
Return value: 1 = success, 0 = failure.
This call is only valid in State 4, when a Source is open.
L, T, R, B = distance to left, top, right, and bottom edge of the area to scan,
measured in the current unit of measure.

Page 135

EZTwain Pro User Guide

TWAIN_SetPaperSize
int TWAIN_SetPaperSize(int nPaper)

Asks the scanner to scan a specific standard paper size.

Note: Some devices support this, some don’t. If the Source refuses to set the
requested paper size, TWAIN_SetPaperSize will try the two other ways to select the
scan area: TWAIN_SetImageLayout and TWAIN_SetFrame.

Caution: TWAIN defines no default paper size. This means that when you open a
device, it is free to select whatever paper size it feels like. If you are running a
device with its user interface suppressed, we recommend that you call
TWAIN_SetPaperSize. This may fail, but when it does the device usually has a
reasonable default – such as 8.5 x 11 inches, or the device's maximum scan area.

Standard TWAIN Paper Sizes

Constant Name Value
Constant Name Value

PAPER_NONE 0

PAPER_A4LETTER 1

PAPER_B5LETTER 2

PAPER_USLETTER 3

PAPER_USLEGAL 4

PAPER_A5 5

PAPER_B4 6

PAPER_B6 7

PAPER_USLEDGER 9

PAPER_USEXECUTIVE 10

PAPER_A3 11

PAPER_B3 12

PAPER_A6 13

PAPER_C4 14

PAPER_C5 15

PAPER_C6 16

PAPER_4A0 17

PAPER_2A0 18

PAPER_A0 19

PAPER_A1 20

PAPER_A2 21

Page 136

EZTwain Pro User Guide

PAPER_A7 22

PAPER_A8 23

PAPER_A9 24

PAPER_A10 25

PAPER_ISOB0 26

PAPER_ISOB1 27

PAPER_ISOB2 28

PAPER_ISOB5 29

PAPER_ISOB7 30

PAPER_ISOB8 31

PAPER_ISOB9 32

PAPER_ISOB10 33

PAPER_JISB0 34

PAPER_JISB1 35

PAPER_JISB2 36

PAPER_JISB3 37

PAPER_JISB4 38

PAPER_JISB6 39

PAPER_JISB7 40

PAPER_JISB8 41

PAPER_JISB9 42

PAPER_JISB10 43

PAPER_C0 44

PAPER_C1 45

PAPER_C2 46

PAPER_C3 47

PAPER_C7 48

PAPER_C8 49

PAPER_C9 50

PAPER_C10 51

PAPER_USSTATEMENT 52

PAPER_BUSINESSCARD 53

Page 137

EZTwain Pro User Guide

TWAIN_GetPaperDimensions
BOOL TWAIN_GetPaperDimensions(int nPaper, int nUnits,

 double *pdW, double *pdH)

Retrieves the width and height of a standard paper size, in specified units. For
nPaper, use one of the PAPER_ codes listed above. For nUnits, use one of the
TWUN_ unit codes, such as TWUN_INCHES(0) or TWUN_CENTIMETERS(1). For pdW
and pdH, pass pointers to 64-bit double-precision floating point variables – or in
languages that support passing parameters by reference, pass the names of two
double-precision float variables.

Returns TRUE(1) if successful. Returns FALSE(0) if nPaper or nUnits are invalid
(unrecognized) values.

Page 138

EZTwain Pro User Guide

Tone Control

TWAIN_SetGrayResponse

int TWAIN_SetGrayResponse(const long pcurve[256])

Define a translation of gray pixel values.
When device digitizes a pixel with value V, that pixel is translated to value pcurve[V]
before it is returned to the application.
Caution: Supported by few devices.

 Device must be open (State 4),
 Current PixelType must be TWPT_GRAY or TWPT_RGB,
 current BitDepth should be 8.
 pcurve must be a table (array, vector) of 256 entries.

TWAIN_SetColorResponse
int TWAIN_SetColorResponse(const long pred[256], const long
pgreen[256], const long pblue[256])

Define a translation of color values.
Like TWAIN_SetGrayResponse (above) but separate translation can be applied to
each color channel. Supported by few devices.

TWAIN_ResetGrayResponse/ TWAIN_ResetColorResponse
int TWAIN_ResetGrayResponse(void)
int TWAIN_ResetColorResponse(void)

These two functions reset the response curve to map every value V to itself i.e. a 'do
nothing' translation.

Page 139

EZTwain Pro User Guide

Functions – Settings Dialog

TWAIN_DoSettingsDialog
int TWAIN_DoSettingsDialog(HWND hwnd)

Display the device's settings dialog and allow the user to adjust any or all settings.
This function returns when the user closes the dialog. This feature is optional in
TWAIN. If a device has a settings dialog, it is normally very similar to the device's
scanning dialog, with the [Scan] button replaced with an [OK] button.

To a first approximation, this feature is supported by no cameras, few flatbeds, and
not all document scanners.

A device may remember its settings when it is closed and re-opened, but it may not:
TWAIN does not require this. You can use TWAIN_GetCustomDataToFile (below) to
save all the settings of a device, and TWAIN_SetCustomDataFromFile to restore them
later. Any device that supports a settings dialog supports the CustomData functions.

If a device is open, uses that device. If no device is currently open, uses the default
device.

To check if a device supports this, open the device and call
TWAIN_GetCapBool(CAP_ENABLEDSUIONLY, FALSE)
which should return TRUE(1) if the device supports this feature.

Return values:
1 dialog was displayed and user clicked OK
0 dialog was displayed and user clicked Cancel

-1 dialog not displayed - some error. Call TWAIN_LastErrorCode,
ReportLastError, or similar function for more details.

TWAIN_EnableSourceUiOnly
int TWAIN_EnableSourceUiOnly(HWND hwnd)

This is the underlying 'asynchronous' function for TWAIN_DoSettingsDialog.
Opens the device's settings dialog, if this is supported.
Returns TRUE (1) if successful, FALSE (0) otherwise.

Note: If successful, this call leaves the dialog open, so your program must run a
message pump at least until the user closes it. If you don't understand what that
means, don't call this function! Use TWAIN_DoSettingsDialog, above.

Page 140

EZTwain Pro User Guide

Functions – Custom DS Data
These functions support an optional feature of TWAIN that allows the application to
read or write all the settings of a TWAIN device in a single operation. This a good
news/bad news feature:

Good: 1. (If implemented properly) it reads and writes all settings of the device,
even settings that are not accessible through TWAIN, like “melt film after
scanning” and “pixel thickness.” Or... the imprinter step size and direction
on Fujitsu ‘fi’ series scanners.

2. When supported, it’s a great way to set a scanner to a predefined,
completely known state.

Bad: 1. It is not universally supported: no cameras that we have seen, not so
many flatbeds, not all document scanners.

2. The format of the saved settings is vendor-specific. If you parse the
data, you are tied to that vendor, and possibly to that specific model
and/or device driver.

Support for this feature can be tested when a device is open, by reading the value of
the Boolean capability CAP_CUSTOMDSDATA. In C:

if (TWAIN_GetCapBool(CAP_CUSTOMDSDATA, FALSE)) {

TWAIN_GetCustomDataToFile
int TWAIN_GetCustomDataToFile(string pzFile)

Takes a file specification, reads the Custom DS Data from the device and saves it in
the file. An existing file will be overwritten. Only valid in State 4 – a device must be
open. See TWAIN_OpenSource, 120. The device must support this optional feature,
see above.
Returns TRUE(1) if successful, FALSE(0) otherwise.

TWAIN_SetCustomDataFromFile
int TWAIN_SetCustomDataFromFile(string pzFile)

Takes a file specification, reads the Custom DS Data from the file and writes it to the
device. The file must exist. Only valid in State 4 – a device must be open. See
TWAIN_OpenSource, 120. The device must support this optional feature, see above.
Returns TRUE(1) if successful, FALSE(0) otherwise.

Page 141

EZTwain Pro User Guide

Functions – Container
For theory and practice of using containers, see the section How To: Work with
Containers (p 161).

CONTAINER_Free
void CONTAINER_Free(HCONTAINER hcon)
Free the memory and resources of a capability container.

CONTAINER_Copy
HCONTAINER CONTAINER_Copy(HCONTAINER hcon)
Create an exact copy of the container.

CONTAINER_Equal
BOOL CONTAINER_Equal(HCONTAINER hcon1, HCONTAINER hcon2)
Return TRUE (1) if all properties of hcon1 and hcon2 are the same. Otherwise return
FALSE (0).

CONTAINER_IsValid
BOOL CONTAINER_IsValid(HCONTAINER hcon)
Returns 1 (TRUE) if the container seems to be valid, 0 (FALSE) if not.
A valid container is one that will not cause errors or exceptions if accessed with the
other CONTAINER_ functions.

CONTAINER_Format
int CONTAINER_Format(HCONTAINER hcon)
Return the 'format' of this container: CONTAINER_ONEVALUE, etc.

Container formats, same codes as in TWAIN.H
CONTAINER_ARRAY 3
CONTAINER_ENUMERATION 4
CONTAINER_ONEVALUE 5
CONTAINER_RANGE 6

CONTAINER_ItemCount
int CONTAINER_ItemCount(HCONTAINER hcon)
Return the number of values in the container. For a ONEVALUE, return 1.

CONTAINER_ItemType
int CONTAINER_ItemType(HCONTAINER hcon)
Return the item type (what exact kind of values are in the container.)
See the TWTY_* definitions in TWAIN.H

CONTAINER_TypeSize
int CONTAINER_TypeSize(int nItemType)
Return the size in bytes of an item of the specified type (TWTY_*)

Page 142

EZTwain Pro User Guide

CONTAINER_FloatValue / CONTAINER_IntValue
double CONTAINER_FloatValue(HCONTAINER hcon, int n)
int CONTAINER_IntValue(HCONTAINER hcon, int n)
Return the value of the nth item in the container.
n is forced into the range 0 to ItemCount(hcon)-1.

CONTAINER_StringValue / CONTAINER_GetStringValue
string CONTAINER_StringValue(HCONTAINER hcon, int n)
void CONTAINER_GetStringValue(HCONTAINER hcon, int n, LPSTR
pzText)
Return the nth value in a container, in the form of a string.
The first form is a function that returns the string as its value. (Not available in VB.)
The second form expects a string variable as its 3rd parameter - in most languages,
the string must be pre-allocated with enough space to hold the returned value - see
n is forced into the range 0 to ItemCount(hcon)-1.

CONTAINER_ValuePtr
BYTE* CONTAINER_ValuePtr(HCONTAINER hcon, int n)

CONTAINER_ContainsValue
int CONTAINER_ContainsValue(HCONTAINER hcon, double d)
Return 1 (TRUE) if the value d is one of the items in the container.

CONTAINER_FindValue
int CONTAINER_FindValue(HCONTAINER hcon, double d)
Return the index of the value d in the container, or -1 if not found.

CONTAINER_CurrentValue / CONTAINER_DefaultValue
double CONTAINER_CurrentValue(HCONTAINER hcon)
double CONTAINER_DefaultValue(HCONTAINER hcon)
Return the container's current or power-up (default) value.
Array containers do not have these and will return -1.0.
OneValue containers always return their (one) value.

CONTAINER_CurrentIndex / CONTAINER_DefaultIndex
int CONTAINER_DefaultIndex(HCONTAINER hcon)
int CONTAINER_CurrentIndex(HCONTAINER hcon)
Return the index of the Default or Current value, in an Enumeration.
Return -1 if the container is not an Enumeration.

CONTAINER_MinValue / CONTAINER_MaxValue
double CONTAINER_MinValue(HCONTAINER hcon)
double CONTAINER_MaxValue(HCONTAINER hcon)

Return the minimum or maximum value of all the values in a container.
Return -1 if the container contains no values, or the values are not scalars.

Page 143

EZTwain Pro User Guide

CONTAINER_StepSize
double CONTAINER_StepSize(HCONTAINER hcon)
Return the step value of a Range container.
Returns -1.0 if the container is not a Range.

CONTAINER_OneValue / CONTAINER_Array
HCONTAINER CONTAINER_OneValue (int nItemType, double dVal)
HCONTAINER CONTAINER_Array (int nItemType, int nItems)
These functions create containers from scratch:
nItemType is one of the TWTY_* item types from TWAIN.H
nItems is the number of items, in an array or enumeration.

CONTAINER_Range / CONTAINER_Enumeration
HCONTAINER CONTAINER_Range(int nItemType, double dMin, double
dMax, double dStep)
HCONTAINER CONTAINER_Enumeration(int nItemType, int nItems)
These functions create containers from scratch:
nItemType is one of the TWTY_* item types from TWAIN.H
nItems is the number of items, in an array or enumeration.
dMin, dMax, dStep are the beginning, ending, and step value of a range.

CONTAINER_SetItem / CONTAINER_SetItemString
int CONTAINER_SetItem(HCONTAINER hcon, int n, double dVal)
int CONTAINER_SetItemString(HCONTAINER hcon, int n, LPCTSTR
pzVal)

Set the nth item of the container to dVal or pzText.
NOTE: A OneValue is treated as an array with 1 element.
Return 1 (TRUE) if successful. 0 (FALSE) for failure:
 The container is not an array, enumeration, or onevalue
 n < 0 or n >= CONTAINER_ItemCount(hcon)
 the value cannot be represented in this container's ItemType.

CONTAINER_SetItemFrame
int CONTAINER_SetItemFrame(HCONTAINER hcon, int n, double l,
double t, double r, double b)

Set the nth item of the container to frame(l,t,r,b).
NOTE: A OneValue is treated as an array with 1 element.
Return 1 (TRUE) if successful. 0 (FALSE) for failure:

The container is not an array, enumeration, or onevalue
n < 0 or n >= CONTAINER_ItemCount(hcon)
the value cannot be represented in this container's ItemType.

Page 144

EZTwain Pro User Guide

CONTAINER_SelectDefaultValue /
CONTAINER_SelectDefaultItem
int CONTAINER_SelectDefaultValue(HCONTAINER hcon, double dVal)
int CONTAINER_SelectDefaultItem(HCONTAINER hcon, int n)

CONTAINER_SelectCurrentValue /
CONTAINER_SelectCurrentItem
int CONTAINER_SelectCurrentValue(HCONTAINER hcon, double dVal)
int CONTAINER_SelectCurrentItem(HCONTAINER hcon, int n)

Select the current or default value within an enumeration or range, by specifying
either the value, or its index.
Returns 1 (TRUE) if successful, 0 (FALSE) otherwise.
This will fail if:

The container is not an enumeration or range.
dVal is not one of the values in the container
n < 0 or n >= CONTAINER_ItemCount(hcon)

CONTAINER_DeleteItem
int CONTAINER_DeleteItem(HCONTAINER hcon, int n)

Delete the nth item from an Array or Enumeration container.
Returns 1 (TRUE) for success, 0 (FALSE) otherwise. Failure causes:

invalid container handle
container is not an array or enumeration
n < 0 or n >= ItemCount(hcon)

CONTAINER_InsertItem
int CONTAINER_InsertItem(HCONTAINER hcon, int n, double dVal)

Insert an item with value dVal into the container at position n.
If n = -1, the item is inserted at the end of the container.

Page 145

EZTwain Pro User Guide

Functions – Testing & Validation

TWAIN_Testing123
HANDLE TWAIN_Testing123(string pz, int n, HANDLE h, double d,
unsigned u)

Display a dialog box with the parameter values in it. Use this to test that you can
call EZTwain and pass parameters correctly. It returns the value of the HANDLE h
parameter.

TWAIN_SelfTest
int TWAIN_SelfTest(unsigned f)

Perform internal self-test.
Parameters

f ignored for now
Return Values

0 success
other internal test failed.

Page 146

EZTwain Pro User Guide

Functions – Obscure (Even for TWAIN)

TWAIN_AutoClickButton
Void TWAIN_AutoClickButton(string pzButtonName)

This odd little function can be used, sometimes, to automate image transfers from a
device that insists on displaying a user interface dialog. Call this function before
calling an Acquire function. When the Acquire starts and the device dialog pops up,
EZTwain will search the dialog for a button with the specified name and simulate the
user clicking that button. If you pass a null string to this function, it looks for a
button with one of the common (English) labels: “Scan”, “Capture”, “Start Scan”,
“Take Picture”, “Scan Now”. Case differences are ignored (‘A’ is the same as ‘a’) as
are the underlined letters in some button labels.

TWAIN_RegisterApp
void TWAIN_RegisterApp (

int nMajorNum, // version numbers are treated as
int nMinorNum, // nMajorNum.nMinorNum
int nLanguage, // language (see TWLG_xxx in TWAIN.H)
int nCountry, // country (see TWCY_xxx in TWAIN.H)
string lpszVer, // version as string e.g. "1.0b3 beta"
string lpszMfg, // vendor e.g. "Zzzzip Software"
string lpszFam, // product family e.g. "Whooshy"
string lpszApp) // specific product e.g. "Whooshy Paint"

This is the long form of TWAIN_SetAppTitle, and need only be used if you know that
some Source needs the additional information. TWAIN_RegisterApp should be called
as one of the first EZTwain calls.

TWAIN_Blocked
int TWAIN_Blocked(void)

Returns 1 if processing is inside the TWAIN Source Manager or a Source, 0 otherwise.
If TWAIN is blocked, EZTwain Pro 2.95 and later will fail any operation that would
require a call into TWAIN – otherwise such calls almost always deadlock.

Why do we have this? Because we found that TWAIN drivers sometimes threw
uncaught exceptions (divide-by-zero, invalid address) which were not caught by the
TWAIN manager, and so ended up being caught by EZTwain. When this happened,
the TWAIN manager was left in a kind of 'death trap' state – any call into it would
block forever on a serialization semaphore. When this function returns TRUE, it
means TWAIN is in that state and is unusable. We use this in applications that have
to be robust in the face of bizarre TWAIN failures, such as Twister.

Page 147

EZTwain Pro User Guide

TWAIN_UserClosedSource
int TWAIN_UserClosedSource(void)

Return TRUE (1) if during the last acquire the user asked the Source to close. 0
otherwise of course. This flag is cleared each time you start any kind of acquire, and
it is set if EZTwain receives a MSG_CLOSEDSREQ message through TWAIN.

TWAIN_BuildName
char* TWAIN_BuildName(void)

Return a string describing the build of EZTwain e.g. "Beta1 Debug"

TWAIN_GetBuildName
void TWAIN_GetBuildName(LPSTR psName)

TWAIN_AcquireMemoryCallback
BOOL TWAIN_AcquireMemoryCallback(HWND hwnd, MEMXFERCALLBACK cb, LPVOID
data)

typedef BOOL (WINAPI *MEMXFERCALLBACK)(LPVOID data);

Like TWAIN_AcquireMemory, but you provide a call-back function. The call-back is
called when the transfer is ready, and is responsible for setting up the transfer,
transferring the data, and doing clean-up.

TWAIN_SetTiled / TWAIN_Tiled
BOOL TWAIN_Tiled(void)
int TWAIN_SetTiled(BOOL bTiled)
Set/Return whether source does memory xfer via strips or tiles.
bTiled = TRUE if it uses tiles for transfer.

TWAIN_SetPlanarChunky / TWAIN_PlanarChunky
int TWAIN_PlanarChunky(void)
int TWAIN_SetPlanarChunky(int shape)

Set/Return current pixel ‘packing’ for memory transfers. See the TWAIN specification
for details.

TWAIN_SetPixelFlavor / TWAIN_PixelFlavor
int TWAIN_PixelFlavor(void)
int TWAIN_SetPixelFlavor(int flavor)

Set/Return pixel 'flavor' - whether 0 is black or white:

#define CHOCOLATE_PIXELS 0 // zero pixel represents darkest shade
#define VANILLA_PIXELS 1 // zero pixel represents lightest shade

Page 148

EZTwain Pro User Guide

TWAIN_GetCapCurrent
int TWAIN_GetCapCurrent(unsigned Cap,
 unsigned ItemType,
 void FAR *pVal)

Do a DAT_CAPABILITY/MSG_GETCURRENT on capability 'Cap'. Copy the current
value out of the returned container into *pVal. If the operation fails (the source
refuses the request), or if the container is not a ONEVALUE or ENUMERATION, or if
the item type of the returned container is incompatible with the expected TWTY_
type in ItemType, returns FALSE. If this function returns FALSE, *pVal is not
touched.

TWAIN_ToFix32 / TWAIN_ToFix32R
long TWAIN_ToFix32(double d)

Convert a floating-point value to a 32-bit TW_FIX32 value that can be passed to e.g.
TWAIN_SetCapOneValue.

long TWAIN_ToFix32(int Numerator, int Denominator)

Convert a rational number to a 32-bit TW_FIX32 value.
Returns a TW_FIX32 value that approximates Numerator/Denominator

TWAIN_Fix32ToFloat
double TWAIN_Fix32ToFloat(long nfix)

Convert a TW_FIX32 value (as returned from some capability inquiries) to a double
(floating point) value.

TWAIN_MessageHook
int TWAIN_MessageHook(LPMSG lpmsg)

This function detects Windows messages that should be routed to an enabled Source,
and picks them off. In a full TWAIN app, TWAIN_MessageHook is called inside the
main GetMessage loop, whose skeleton code looks like something like this:

Page 149

EZTwain Pro User Guide

 MSG msg;
 BOOL bGot;
 while ((bGot = GetMessage((LPMSG)&msg, NULL, 0, 0)) != 0) {
 if (bGot < 0) {
 // something weird.
 } else if (!TWAIN_MessageHook ((LPMSG)&msg)) {
 TranslateMessage ((LPMSG)&msg);
 DispatchMessage ((LPMSG)&msg);
 }
 } // while

TWAIN_GetSourceIdentity
int TWAIN_GetSourceIdentity(LPVOID ptwid)

Get a copy of the TW_IDENTITY structure (see twain.h) used inside EZTwain to hold
information about the current / most recently opened Source.

TWAIN_DS
int TWAIN_DS(unsigned long DG, unsigned DAT, unsigned MSG, void
FAR *pData)

TWAIN_DS passes the triplet (DG, DAT, MSG, pData) to the open Source if any.
Returns 1 (TRUE) if the operation is successful, 0 (FALSE) otherwise.
The last result code can be retrieved with TWAIN_GetResultCode(), and the
corresponding condition code can be retrieved with TWAIN_GetConditionCode().
If no source is open this call will fail, result code TWRC_FAILURE, condition code
TWCC_NODS.

This function plus TWAIN_Mgr below give you direct access to the TWAIN API,
although this function does provide two hidden services: It tracks the TWAIN state,
and it traps exceptions inside TWAIN and turns them into failure returns.

TWAIN_Mgr
int TWAIN_Mgr(unsigned long DG, unsigned DAT, unsigned MSG, void
FAR *pData)

Pass a triplet to the Source Manager (DSM).
Returns 1 (TRUE) for success, 0 (FALSE) otherwise.
See GetResultCode, GetConditionCode, and ReportLastError functions for diagnosing
and reporting a TWAIN_Mgr failure.

If the Source Manager is not open, this call fails setting result code TWRC_FAILURE,
and condition code=TWCC_SEQERROR (triplet out of sequence).

This function with TWAIN_DS above give you direct access to the TWAIN API.

Page 150

EZTwain Pro User Guide

Functions – Deprecated
For a list of functions that have been deleted from the current release, see Appendix
1 – History.

The following functions are candidates to be removed in a future major-version
update to EZTwain Pro:

{no functions at this time}

Page 151

EZTwain Pro User Guide

Glossary

BMP (BitMaP) File
The standard raster image file format used by Microsoft® Windows. BMP files can
store 1-bit, 4-bit, 8-bit, and 24-bit (per pixel) images, and much less commonly, 16-
bit and 32-bit images. While there is an optional compression for BMP files, it is
rarely used and is particularly unsuitable for continuous tone images. A BMP file is
simply a DIB (q.v.) with a small header stuck in front.

Capability
TWAIN term for a property or setting of a device, that is accessible (‘exposed’) to
TWAIN applications. Every standard capability is given a name and code.

Some capabilities are read-only, such as CAP_PAPERDETECTABLE, which has the
value TRUE or FALSE depending on whether the device can detect paper in its
document feeder. A device that has no document feeder will not even have this
capability.

Other capabilities can be read and modified by the application, and can have
complex behavior: For example, ICAP_PIXELTYPE describes the ‘kind of pixels’ the
device can deliver. Most scanners can deliver 1-bit Black & White, Grayscale, or RGB
Color, and will allow the application to specify which it would like, but a webcam may
offer only RGB, and reject an attempt to set any other value.

Container
TWAIN term for a global memory block holding one or more values or data items,
used to represent a capability value i.e. a property or setting of a device.

Datasource (Source, Data Source, DS)

A device-specific TWAIN interface module. In some ways, a Source is just a glorified
driver – but a TWAIN Source is different from a conventional driver in three ways:

1. A Source has a user interface – typically a dialog box, sometimes an elaborate
collection of overlapping windows.

2. A Source runs as part of the client application i.e. your program. It is in fact a
DLL, and functions as a temporary extension of the application. This is
radically different from typical device drivers that run inside the protected
shell of the OS.

3. A Source in most cases does not communicate directly with its device, but
works through a lower-level kernel-mode driver. Sometimes this driver is
device-specific and is provided by the device manufacturer. Sometimes it’s a
generic Windows driver that simply provides communication services for USB
devices, or SCSI devices.

TWAIN Sources install underneath \Windows\twain_32 or \Windows\twain_64
and have an extension of .ds even though they are DLLs.

Page 153

EZTwain Pro User Guide

Datasource Manager (AKA DSM)
The common TWAIN module distributed by the TWAIN Working Group. This module,
often called the DSM, is maintained by the members of the Working Group, and is
provided in binary form to all TWAIN developers. It is customary for TWAIN devices
to install/update the DSM when they install their individual TWAIN Sources and low-
level drivers.

The job of the DSM is to act as a go-between, coordinating and passing information
between TWAIN applications and TWAIN Sources. Many users and developers
assume that ‘TWAIN’ (meaning the DSM) does some kind of serious processing or
translation during scanning. This is not true. The DSM’s jobs are simple:

1. Find and enumerate the installed Sources, display the Select Source dialog on
request, and remember which DS is currently the default.

2. When an application issues an OPEN request, connect it with a Source.

3. Pass TWAIN operation requests from the application to the open DS, and pass
notifications back to the application from the DS.

All user interface, image processing, error handling, etc. etc. is divided between the
application and the DS.

Default Datasource AKA Default TWAIN Device
To avoid applications asking users ‘From which device?’ every time they want to
acquire an image, TWAIN defines a default device.

If there is only one TWAIN device installed in the system, then - that’s it. Otherwise,
it is the last TWAIN device selected by the user in the Select Source dialog. Which is
the only bit of user interface provided by TWAIN itself, so to speak – it is displayed
by the TWAIN Source Manager.

Deskew
Scanning jargon meaning ‘to straighten up’. If you have done much scanning, you
have probably noticed that some documents are scanned at a slight angle, This is
called skew in the imaging industry. Some scanners, and many image software
packages including EZTwain, can straighten out or deskew such tilted scans.

DIB (Device Independent Bitmap)
An image format defined and used by Windows – EZTwain stores images in memory
as DIBs. A DIB consists of a header giving height, width, bits per pixel, resolution,
and so forth, followed by a color table if needed, followed by the pixels of the image.
As an added complexity, the convention in Windows is to store DIBs in global
memory blocks and work with the handles of these blocks – which are not pointers.
You will frequently see images referenced by objects of type HANDLE, or HGLOBAL or
HDIB.
As a consequence, to access the information in a DIB you must either lock the DIB
handle to obtain a pointer, or call one of EZTwain’s many DIB functions (which lock
and unlock the handle internally.)

Page 154

EZTwain Pro User Guide

FIX32 or TW_FIX32
A structure defined by TWAIN to represent fractional numeric values. It is a ‘fixed
point’ representation, a signed 32-bit integer with an implied binary point in the
middle - i.e. 16 fractional bits. EZTwain includes various functions for working
directly with FIX32 values, but for the most part EZTwain functions accept and return
double (64-bit floating point) values and convert to FIX32 values internally.

GIF - Graphics Interchange Format
An image format originally defined by CompuServe. The version known as GIF 89a
became ubiquitous on the World-Wide Web, although it was impaired by patent
issues for many years. Once the patents expired, EZTwain adopted full support for
GIF. It is typically used as an export format. GIF has a standard ‘zip-like’
compression mode, and does well with line-art, text documents, and computer-
generated images. It does very poorly at compressing grayscale and color images.

JFIF (JPEG File Interchange Format) File
Technically, the format commonly used to store JPEG-compressed images.

Nobody officially maintains this format, despite its incredibly wide use. The
definition is available for example at:
http://www.w3.org/Graphics/JPEG/jfif3.pdf

JPEG (Joint Photographic Experts Group)
A standard form of compression for grayscale and color images. It is a lossy form of
compression, because it discards some (hopefully less important) information from
the original image, based on a model of the Human Visual System. The JPEG
committee did not define a specific file format, so JFIF was defined – see JFIF files.

If you are seriously interested in JPEG compression, you can start here:
http://old.jpeg.org/public/jpeghomepage.htm

PDF (Adobe Portable Document Format) File
A widely used format for public distribution of electronic documents, PDF can be used
to store single-images or multiple pages. When writing to PDF, EZTwain stores 1-bit
images losslessly, but uses lossy JPEG compression for grayscale and color images.
See http://www.adobe.com/products/acrobat/main.html

PNG (Portable Network Graphics) File
A relatively new image file format designed to supercede GIF, particularly for World
Wide Web graphics: PNG uses a lossless compression that does best on 1-bit B&W
line-art (or text), where there are significant areas of identical color. PNG provides
little compression for photographs and other imagery. See
http://www.libpng.org/pub/png/ for all the details.

Resolution
In digital imaging and scanning, resolution is how finely a digital image divides up
the physical world, commonly measured in dots per inch (DPI). DPI is commonly

Page 155

http://www.libpng.org/pub/png/
http://www.adobe.com/products/acrobat/main.html
http://old.jpeg.org/public/jpeghomepage.htm
http://www.w3.org/Graphics/JPEG/jfif3.pdf

EZTwain Pro User Guide

used, even in metric countries i.e. outside the USA. You will sometimes encounter
the term samples as a more highbrow synonym for “dots.”

If an image is “200 DPI” this means the image contains 200 rows per vertical inch,
and 200 columns per horizontal inch. Compared to a 100 DPI image, the 200 DPI
image can distinguish a line or dot that is half as wide. The 200 DPI image also has
4 times as many pixels in it.

Thumbnail
A thumbnail is a small image - typically 32 to 64 pixels high, similar to an icon
except that it is a low-resolution copy of the original that it represents.

TIFF (Tagged Image File Format) File
A complex, comprehensive image file format – the dominant standard for high-
quality image interchange in graphic arts and publishing.
See: The Unofficial TIFF Home Page at http://home.earthlink.net/~ritter/tiff/

Transfer Mode (AKA Transfer Mechanism AKA Xfer Mech)
TWAIN defines three ways for a TWAIN device (driver) to transfer image data to an
application:

1. Native: In a single block in memory, formatted as a DIB (see above).
2. Memory: In a series of buffers, each holding part of the image.
3. File: As a file on disk.

The file transfer mode is optional, and not all TWAIN devices support it. For most
scanning applications, you should let EZTwain choose the transfer mode.

Triplet
Specialized TWAIN term: Every communication from an application to TWAIN
consists of a triplet of codes plus a pointer. The functions TWAIN_DS and
TWAIN_Mgr expose this bottom-level interface to TWAIN. Discussions of the TWAIN
protocol often refer to sending triplets and the response to such-and-such triplet, and
the core of the TWAIN Specification is the list of triplet definitions.

TWAIN
The Technology Without An Interesting Name. Actually TWAIN is not an acronym,
which has caused endless confusion and frustration over the years.

TWAIN is an industry-standard application programming interface (API) for
applications to acquire images from imaging devices. It is only available on Microsoft
Windows and Apple Macintosh. Familiar devices such as scanners, digital cameras,
and webcams typically support TWAIN, as do some more exotic devices such as x-ray
film scanners and digital microscopes. Almost all programs that can work with
images support TWAIN – image editors such as Photoshop, web design programs like
Dreamweaver. The latest specification (at the time of this writing) is 1.9 – See the
TWAIN Specification

Page 156

http://www.twain.org/docs/Spec1_9_197.pdf
http://www.twain.org/docs/Spec1_9_197.pdf
http://home.earthlink.net/~ritter/tiff/

EZTwain Pro User Guide

TWAIN Working Group
The informal organization that maintains the TWAIN Specification (Version 1.9 at the
time of this writing) – The specification and much other TWAIN information is
available at www.twain.org

TWAIN Compliance
Compliance with the TWAIN standard is voluntary: TWAIN is not a trademark, and
the TWAIN Working Group does not certify or enforce compliance of products. So,
while it is wonderfully comprehensive and flexible, TWAIN is correspondingly
burdened by its complexity, and a great amount of variation between devices.
Almost every “TWAIN compliant” device can be shown to be non-compliant in some
respect. EZTwain hides as much of this messiness as it can.

TWAIN States
TWAIN defines 7 states of a TWAIN ‘conversation’. Certain operations are only valid
in certain states, and certain state transitions tell the Source, or the application,
when they can get to work. Following are definitions of the 7 TWAIN States, please
see the TWAIN Specification for the final, official word.

TWAIN State 1: TWAIN Not Loaded

TWAIN State 2: Source Manager Loaded

TWAIN State 3: Source Manager Open

TWAIN State 4: DS Open
The Datasource is open but not enabled – You can talk to it, and it has not initiated
any image acquisition. You can negotiate with the DS to determine the parameters
of image acquisition. All of the functions listed under Capability Negotiation can be
called in State 4 – The ones that set capabilities can only be safely called in State 4.
You can read capabilities in State 4 or higher.

TWAIN State 5: DS Enabled
When the application enables the DS, it means ‘go ahead with acquisition’. In this
state, the DS will normally display a dialog or user interface, allowing the user to
tweak the controls and set the settings, and eventually, perhaps, click on the button
labeled Scan, Capture, or whatever.
If the DS is enabled without user interface, which most but not all DS’s can do, then
a proper DS will immediately begin acquiring an image, using the parameters
negotiated in State 4.

TWAIN State 6: Transfer Ready
When an image is actually available and ready to transfer, the DS signals the
application by posting a message, indicating that it is in State 6. In this state, the
application must either cancel the transfer, or initiate transfer.

Page 157

http://www.twain.org/

EZTwain Pro User Guide

TWAIN State 7: Transfer In Progress
This is the State while image data is actively being transferred, and just after. The
application is required to acknowledge the transfer, which moves the State to either
6 or 5, depending on whether another transfer is ready.

Page 158

EZTwain Pro User Guide

Appendix 1 - History
For specific changes between minor releases, please refer to the file History.txt,
which is installed as part of the EZTwain Pro toolkit.

Changes from EZTwain Pro 3.0

Legal Changes

EZTwain Pro is now owned, sold and supported by Atalasoft, Inc. The license
covering EZTwain Pro 4.0 is based on the license of other Atalasoft products, and
differs in many important ways. Of the four or more license 'modalities' under which
EZTwain Pro 3 was offered by Dosadi, only one, the Universal License, is offered by
Atalasoft.

Technical Changes

The SDK installs into \Program Files\EZTwain4
or on 64-bit systems, into \Program Files (x86)\EZTwain4

Probably the biggest change, because it affects your deployment, troubleshooting,
installer or setup, etc: The deployable binary files change names:

Old New
Eztwain3.dll Eztwain4.dll
EZCurl.dll EZT4Curl.dll
EZDcx.dll EZT4Dcx.dll
EZGif.dll EZT4Gif.dll
EZJpeg.dll EZT4Jpeg.dll
EZOcr.dll EZT4Ocr.dll
EZPdf.dll EZT4Pdf.dll
EZPng.dll EZT4Png.dll
EZSymbol.dll EZT4Symbol.dll
EZTiff.dll EZT4Tiff.dll

The built-in barcode engine is now called the 'Native' engine instead of the 'Dosadi'
engine, and the constant is renamed:

Old: EZBAR_ENGINE_DOSADI New: EZBAR_ENGINE_NATIVE

Functions marked as 'deprecated' in previous EZTwain 3.x releases have been
removed. Quoting from History.txt:

Page 159

EZTwain Pro User Guide

Deleted Function Suggestion
TWAIN_SetVendorKey use TWAIN_UniversalLicense
TWAIN_OrganizationLicense this license is no longer available
TWAIN_AcquireNative use TWAIN_Acquire
TWAIN_WriteToFilename use DIB_WriteToFilename
TWAIN_SaveToFilename use DIB_WriteToFilename
TWAIN_WriteNativeToFile use DIB_WriteToFilename
TWAIN_WriteNativeToFilename use DIB_WriteToFilename
TWAIN_WriteDibToFile use DIB_WriteToFilename
TWAIN_LoadNativeFromFilename use DIB_LoadFromFilename
TWAIN_DibDepth, TWAIN_DibWidth use DIB_Depth, DIB_Width
TWAIN_DibHeight use DIB_Height
TWAIN_DibNumColors no direct equivalent.

DIB_ColorCount is related...
TWAIN_DibRowBytes use DIB_RowBytes
TWAIN_DibReadRow use DIB_ReadRow
TWAIN_CreateDibPalette use DIB_CreatePalette
TWAIN_DrawDibToDC use DIB_DrawToDC
TWAIN_NegotiatePixelTypes closest is: TWAIN_SetPixelType
TWAIN_IsTransferReady Redesign using TWAIN_IsDone

Page 160

EZTwain Pro User Guide

Appendix 2 - Working with Containers
Theory

Containers are the currency of TWAIN settings. TWAIN devices have dozens,
sometimes hundreds of properties that can be queried and set: Is there paper in the
feeder, resolution to use for the next scan, the serial number of the device. TWAIN
calls these properties capabilities, and capability values move back and forth
between application and TWAIN device in packages called containers. TWAIN calls
this exchange capability negotiation.

Because it is necessary for the application and device to communicate not just the
current value of a capability, but also its set of possible values, containers are quite
rich and complex.

Advisory: There is no way to talk about containers in TWAIN without introducing a
lot of terms and concepts. Before reading the following, we recommend you open
our Twirl TWAIN Probe, included in the EZTwain Pro toolkit. It can examine any
TWAIN device on your computer and display its capabilities. You can select any
capability and Twirl will describe the containers that are returned by that capability.
Seeing how containers are actually used by your specific TWAIN device may make
the following more comprehensible.

Page 161

EZTwain Pro User Guide

Containers come in four flavors, depending on what they need to represent:

A OneValue container holds a single value, like: 200. Commonly used to select a
specific value for a capability, such as 200 DPI for resolution, or to answer a simple
query like CAP_FEEDERLOADED (“is there paper in the feeder”.)

An Enumeration container is a set of values, with two values called out – Current
and Default. When queried with TWAIN_Get, many TWAIN capabilities return an
Enumeration representing the set of valid values, plus the current value and the
default (reset) value.

A Range container describes a set of values by giving a minimum value, a maximum
value, and an increment or step. It’s like a for-loop. Like an Enumeration, the
Range container can specify a Current value and a Default value.

An Array container holds a list of values, none of which are special. Array containers
are used with capabilities whose values are actually sets - like
CAP_SUPPORTEDCAPS.

All the items in a container are of the same basic item type, chosen from the
following unecessarily baroque set.

TWAIN Container Item Types

Item Type What each item holds
TWTY_INT8 8-bit signed integer (-128..127)
TWTY_INT16 16-bit signed integer (-32768..32767)
TWTY_INT32 32-bit signed integer (go figure)
TWTY_UINT8 8-bit unsigned integer (0..255)
TWTY_UINT16 16-bit unsigned integer (0..65535)
TWTY_UINT32 32-bit unsigned integer (0.. 4294967295)
TWTY_BOOL TRUE (1) or FALSE (0)
TWTY_FIX32 32-bit fractional number about -32767.9999 to 32767.9999
TWTY_FRAME a rectangle defined by 4 TWTY_FIX32 values
TWTY_STR32 32-character ANSI string
TWTY_STR64 64-character ANSI string
TWTY_STR128 128-character ANSI string
TWTY_STR255 255-character ANSI string
TWTY_STR1024 1024-character ANSI string
TWTY_UNI512 512-character UNICODE string

All these appear as defined constants in the EZTwain declaration file for your
programming language. EZTwain tries to hide the details from you, but you should
be aware that underneath, every container has a specific item type, and every
capability has a specific item type that it works with.

Practice

EZTwain represents containers with a handle called an HCONTAINER. This is
basically an unsigned integer.

Note: Because these are handles and not ‘objects’, you are responsible for releasing
them when you are done with them, using CONTAINER_Free. The amount of

Page 162

EZTwain Pro User Guide

memory involved is not as large as with images, but it is good practice to avoid
leaks.

The function TWAIN_Set (EZTwain.SetCap) is the fundamental function for sending a
container to a capability. This function can only be called in TWAIN State 4, and will
produce an error if called in any other state. TWAIN State 4 is the capability-setting
state.

TWAIN_Get (EZTwain.GetCap) is the core function for querying the value of a
capability. The TWAIN State must be 4 or higher, or this function will produce an
error. TWAIN_GetCurrent (EZTwain.GetCurrent) is used somewhat less often - it is
supposed to return just the current value of a capability, but many TWAIN devices
return the same container for both TWAIN_Get and TWAIN_GetCurrent.

Example 1. Enumerate Resolutions

Suppose you want to find out what resolutions a device supports. Assume the device
is open from a previous call to TWAIN_OpenSource or TWAIN_OpenDefaultSource, so
the device is in State 4. This is C/C++ code, the comments should help you
translate to other languages:

Page 163

EZTwain Pro User Guide

// declare hcon as a container handle
HCONTAINER hcon;
// Set the unit of measure to inches, because we want
// resolution in samples per inch. In theory if current units
// were cm, resolution would be returned in samples per cm!
// (Don’t count on that though, some devices always use DPI.)
TWAIN_SetUnits(TWUN_INCHES);
// We will use TWAIN_Get (EZTwain.GetCap) to get the
// x-resolution capability value as a container.
// You can assume that this container will list all allowed
// (X) resolutions, plus the current and default resolution.
hcon = TWAIN_Get(ICAP_XRESOLUTION);
// Notice that TWAIN distinguishes X-resolution from Y-
resolution,
// although they are normally the same sets of values, and
// *usually* setting one will set the other to the same value.
if (hcon != 0) {
 // It is mandatory for every TWAIN driver to support
 // ICAP_XRESOLUTION and ICAP_YRESOLUTION, so in this case
 // the check for valid hcon is pretty silly. If this
 // capability was optional, hcon = 0 would mean that the
 // capability is not supported.
 // Declare floating-point variables for resolution values:
 double dXRes, dXResCurrent, dXResDefault;
 dXResCurrent = CONTAINER_CurrentValue(hcon);
 dXResDefault = CONTAINER_DefaultValue(hcon);
 // Loop through all the supported values.
 // CONTAINER_ItemCount is always the number of values in hcon
 for (int i = 0; i < CONTAINER_ItemCount(hcon); i++) {
 // get the ith item in hcon, item 0 is the first:
 dXRes = CONTAINER_FloatValue(hcon, i);
 // do something with dXRes, like add to a listbox.
 } // end for
 CONTAINER_Free(hcon); // release the container
}
// Just for fun, reset X-resolution to default value:
TWAIN_Reset(ICAP_XRESOLUTION);

Example 2. Custom Capability

For simple query/set situations, you may not need to use containers at all - you can
usually use ETwain’s higher-level capability functions.

TWAIN reserves the upper 32,768 capability codes for custom capabilities -
capabilities that are defined by the device vendor for a specific product or product
family. There are only two ways to find out what these capabilities do - Ask the
manufacturer, or experiment - for example, with Twirl.

The Canon DR-2080C has a custom capability code hex 8025 (decimal 32805).
Using Twirl we find that this capability uses type TWTY_INT32, and it returns an
enumeration containing the values 2 and 0. By setting this capability through Twirl
and enabling the device so its dialog pops up, we find that this capability controls the

Page 164

EZTwain Pro User Guide

Automatic Border Removal feature: 2=enabled, 0=disabled. This is enough
information for us to control this capability in our code, using the function
TWAIN_SetCapability, which is specifically designed for setting custom capabilities:

// Try to enable Automatic Border Removal on DR-2080C:
TWAIN_SetCapability(32805, 2);

Here is what this function is doing for you at a lower level:

// Declare a variable to hold a container handle
HCONTAINER hcon
// Create a one-value container of the correct type:
hcon = CONTAINER_OneValue(TWTY_INT32, 2);
// Try to set the Automatic Border Removal capability:
TWAIN_Set(32805, hcon);
// Don’t leak memory:
CONTAINER_Free(hcon);

To read the current value of this capability, you could use code like this:

// Declare a variable to hold a container handle (32-bit integer)
HCONTAINER hcon
// Get the container for the Automatic Border Removal capability:
hcon = TWAIN_Get(32805);
if (hcon != 0) {
 // valid container handle returned.
 // Test the current value represented by this container.
 // If it’s a Range or Enumeration, find the Current value
 // If it’s a OneValue, just use that (one) value:
 if (CONTAINER_CurrentValue(hcon) == 2) {
 ABRenabled = TRUE;
 } else {
 ABRenabled = FALSE;
 }
 CONTAINER_Free(hcon)
}

Page 165

EZTwain Pro User Guide

Example 3. Endorser/Imprinter

Some scanners have an internal printer (called an imprinter or endorser) that can
print something on each scanned page. There is wide variation in when, where, and
what they print - before or after scanning, top, bottom, front, back, strings, serial
numbers, etc. The TWAIN standard draws the following distinction:

“Imprinters are used to print data on documents at the time of scanning, and may be
used for any purpose. Endorsers are more specific in nature, stamping some kind of
proof of scanning on the document.” TWAIN 1.9 p. 9-393

EZTwain does not include any functions specifically for controlling an imprinter or
endorser, so you must roll your own from lower-level functions.

HCONTAINER hcon;
// Get the list of available printer devices:
hcon = TWAIN_Get(CAP_PRINTER);
if (hcon == 0) return; // no printer available
// Enumerate the available printer types:
for (int i = 0; i < CONTAINER_ItemCount(hcon); i++) {
 // Look at each entry in the container, the TWAIN spec lists
 // the printer types under CAP_PRINTER:
 int PrinterType = CONTAINER_IntValue(hcon, i);
} // end for
CONTAINER_Free(hcon);

Here is code to enable the current printer (whatever type it is), and try to tell it to
imprint on each page a string of the form Document-NNN-eztwain, with NNN starting
at 640. Your scanner may not support this mode, of course.

// Enable the printer:
TWAIN_SetCapBool(CAP_PRINTERENABLED, TRUE);
// Tell printer to print a ‘compound string’ (mode 2),
// meaning <prefix-string><number><suffix-string>
TWAIN_SetCapOneValue(CAP_PRINTERMODE, TWTY_UINT16, 2);
// Tell printer to start serial numbers at 640:
TWAIN_SetCapOneValue(CAP_PRINTERINDEX, TWTY_UINT32, 640);
// Now, create a onevalue string (STR255) container, which
// can be used to set both the prefix and suffix:
hcon = CONTAINER_OneValue(TWTY_STR255, 0);
// First set “Document-“ as the container’s one value:
CONTAINER_SetItemString(hcon, 0, “Document-”);
// Use that to set the (prefix?) printer string:
TWAIN_Set(CAP_PRINTERSTRING, hcon);
// The container still exists, change its value
// to “-eztwain”, our suffix
CONTAINER_SetItemString(hcon, 0, “-eztwain”);
// Set the printer’s suffix string:
TWAIN_Set(CAP_PRINTERSUFFIX, hcon);
// Done with this container, don’t leak memory.
CONTAINER_Free(hcon);

Page 166

EZTwain Pro User Guide

Appendix 3 - Multithreading with EZTwain
It is possible to use EZTwain in a multithreaded program: Several customers have
done this. You can follow the Simple Rule or the Complicated Rules.

Simple Rule for Multithreading

Make all EZTwain calls in one single thread, and if you pass a Window handle to
EZTwain, it must belong to (have been created by) that thread.

Complicated Rules for Multithreading

1. Once a call is made in thread T that moves the TWAIN State above State 2, all
calls that require a State above State 2 must be made in thread T until the state
drops to State 2 or lower. This includes all calls that change, or can change, the
State, and all calls that set or query scanning capabilities or parameters. This
includes: TWAIN_GetSourceList and TWAIN_(Get)NextSourceName.

2. Any window handle passed as a parameter to an EZTwain call from thread T must
have been created in thread T.

3. DIB_ functions can be called in any thread, as long as they are given a valid DIB
handle. This also applies to:

TWAIN_BeginMultipageFile, TWAIN_DibWritePage, TWAIN_EndMultipageFile
TWAIN_MultipageCount
TWAIN_FormatOfFile.

4. CONTAINER_ functions can be called in any thread, as long as they are given a
valid HCONTAINER.

5. Certain EZTwain global-state functions can be called in any thread, but EZTwain
does not protect itself from race conditions. For example:

TWAIN_State
TWAIN_RegisterApp, TWAIN_SetAppTitle
TWAIN_SetApplicationKey, TWAIN_SetVendorKey
TWAIN_ApplicationLicense, TWAIN_OrganizationLicense
TWAIN_SetHideUI / TWAIN_GetHideUI
TWAIN_SetMultiTransfer / TWAIN_GetMultiTransfer
TWAIN_SuppressErrorMessages
TWAIN_IsMultipageAvailable, TWAIN_IsJpegAvailable, etc.
TWAIN_FormatFromExtension
TWAIN_SetFileAppendFlag / TWAIN_GetFileAppendFlag
TWAIN_SetSaveFormat / TWAIN_GetSaveFormat
TWAIN_SetMultipageFormat / TWAIN_GetMultipageFormat
TWAIN_SetJpegQuality / TWAIN_GetJpegQuality
TWAIN_SetTiff* / TWAIN_GetTiff*
TWAIN_EasyVersion
TWAIN_DisableParent / TWAIN_GetDisableParent

Page 167

EZTwain Pro User Guide

Appendix 4 - EZTwain Datatypes

EZTwain Datatypes

C/C++ type physical representation

void used as a placeholder to mean ‘nothing’ or ‘no value’

int signed word (32 bits)

unsigned unsigned word (32 bits)

double 64-bit (8-byte) IEEE binary floating number

double* (1) pointer to a double.

LPSTR ointer to 0-terminated string of 8-bit ANSI characters.

char* same as LPSTR

LPCSTR same as LPSTR but pointed-to string cannot be modified.

LPVOID pointer, not specified to what.

BYTE* pointer to a byte (usually used to point to a buffer of data.)

LPMSG pointer to a Windows MSG structure.

HANDLE unsigned number, used to designate an object.

HWND HANDLE of a window.

HCONTAINER HANDLE to an EZTwain container object.

BOOL 32-bit word either 0 (FALSE) or 1 (TRUE)

HPALETTE HANDLE specifically for a Windows GDI palette.

HDC HANDLE of a Windows GDI Device Context.

HFILE HANDLE of a Windows file, for CreateFile, Write, _lclose, …

Note 1: In EZTwain, parameters declared as double* are used by the called function
to return values. In Visual Basic these would be declared as ByRef parameters. If
your language has the concept of reference parameter, you would translate double*
as a parameter of type double passed by reference.

Page 169

EZTwain Pro User Guide

Index
16-bit grayscale...........................129
48-bit color.................................129
A4 Letter (paper size)...................136
A5 (paper size)............................136
Access...

sample application........................6
access restrictions........................103
Acrobat Reader............................103
ADF...19
Anisotropic images.........................52
array of DIBs....................................

freeing......................................43
arrays..

loading from file.........................92
loading from memory..................96
printing.....................................70
scanning to................................29
writing to file.............................88
writing to memory......................95

auto rotation.................................22
auto-numbered filenames...............30
auto-OCR mode.............................37
autocontrast.....................................

mode..36
autocontrast adjust........................63
autocrop..

autocrop functions......................62
mode..36

autodeskew......................................
definition...................................62
mode..36

autonegate.......................................
mode..37

averaging...
B&W to grayscale........................58
pixels in an image.......................64

B&W..
pixel type...........................44, 123
scanning..................................123

B4 (paper size)............................136
B5 Letter (paper size)...................136
barcode..

Axtel engine...............................74
Black Ice engine.........................74
detection in hardware..................40
direction flags............................77
engines.....................................73
Inspirant engine.........................74
LeadTools engine........................73

native engine.............................73
recognition................................72
recommended book.....................72
symbology (definition)................72
types (symbologies)....................77

BARCODE_AvailableDirectionFlags. . .76
BARCODE_GetDirectionFlags...........76
BARCODE_GetRect.........................78
BARCODE_GetText.........................78
BARCODE_IsAvailable....................75
BARCODE_IsEngineAvailable...........75
BARCODE_NoZone.........................77
BARCODE_ReadableCodes..............76
BARCODE_Recognize......................77
BARCODE_SelectedEngine..............75
BARCODE_SelectEngine..................75
BARCODE_SetDirectionFlags...........76
BARCODE_SetZone........................77
BARCODE_Text..............................78
BARCODE_Type.............................77
BARCODE_TypeName.....................76
Black Ice Barcode Engine................74
blank pages......................................

DIB_IsBlank...............................64
discarding, example....................20

BMP...84
Borland C++ Builder..................6, 10
brightness..

scanning..................................124
TWAIN_SetBrightness................124
TWAIN_SetContrast..................124

brightness & contrast.........................
adjustment of an image...............55

buffers...
images files in memory...............95

C#...6
sample application........................6

Canon DR-2080C.........................164
CAP_PRINTER..............................166
capability negotiation.....28, 123, 131,

157, 161
CCITT Group 4 Fax compression......84
Chocolate (chocolate pixels)..........148
Clarion......................................6, 10
clipboard......................................67
clipboard functions.........................67
CMY......................................44, 123
CMYK....................................44, 123
code 39 barcode............................73

Page 171

EZTwain Pro User Guide

color table...........43, 46, 66, 123, 154
color table..

optimized..................................58
components......................................

extracting color components........65
files of EZTwain library..................4
of color table..............................46
(channels) of an image..........64, 65

compression................................155
compression.....................................

in PDF files.........................87, 101
LZW - Unisys patent....................97

CONTAINER_Array.......................144
CONTAINER_ContainsValue.....33, 143
CONTAINER_CurrentIndex............143
CONTAINER_CurrentValue.....143, 165
CONTAINER_DefaultIndex.............143
CONTAINER_DefaultValue.............143
CONTAINER_DeleteItem...............145
CONTAINER_FindValue.................143
CONTAINER_FloatValue................143
CONTAINER_Format.....................142
CONTAINER_Free..................162, 165
CONTAINER_GetStringValue..........143
CONTAINER_IntValue...................143
CONTAINER_IsValid.....................142
CONTAINER_ItemCount..142, 144, 145
CONTAINER_ItemType..................142
CONTAINER_MaxValue.................143
CONTAINER_MinValue..................143
CONTAINER_OneValue..................165
CONTAINER_SelectCurrentItem.....145
CONTAINER_SelectCurrentValue....145
CONTAINER_SelectDefaultItem......145
CONTAINER_SelectDefaultValue.....145
CONTAINER_SetItem....................144
CONTAINER_StepSize...................144
CONTAINER_StringValue...............143
CONTAINER_TypeSize..................142
CONTAINER_ValuePtr...................143
containers...................................142

Array container.........................162
creating...................................144
Enumeration container.......144, 162
OneValue container............144, 162
Range container................144, 162
working with............................161

contrast...
adjustment, automatic................63
scanning..................................124

copying..
DIBs...43
pixels..59

counting pages.................................
after multipage acquire...............90

cropping...
an image...................................59
during scan..............................133

custom capabilities.......................164
custom capability.........................132
custom DS data...........................141
Custom TIFF tags...........................98
Daniel Stenberg...........................107
Data Source Manager...................154
dBASE......................................6, 10
DCX................3, 4, 28, 85, 86, 89, 91
DDB...49
debugging...........................118, 146
deep DIBs...................................129
Default Datasource.................39, 154
default multipage format................89
default printer...............................69
Delphi..6, 9
deprecated functions....................151
deskew.......................................154
device context...............................61
Device Independent Bitmap...........154
DIB...............15, 27, 28, 49, 153, 154
DIB...

allocating...................................43
conversion.................................58
converting to HBITMAP................50
converting to Picture...................51
depth..44
drawing in with GDI....................61
freeing......................................43
handles..............................66, 154
reading from file.........................91
resolution.............................45, 46
rotation.....................................56
row access.................................47
scaling/resizing..........................57
writing to file........................88, 89

DIB_AdjustBC...............................55
DIB_Allocate.................................43
DIB_AutoContrast..........................63
DIB_AutoCrop...............................62
DIB_AutoDeskew...........................62
DIB_Avg.......................................64
DIB_AvgColumn............................64
DIB_AvgRegion.............................64
DIB_AvgRow.................................64
DIB_BitsPerPixel............................44
DIB_BitsPerSample........................44
DIB_Blt..59
DIB_BltMask.................................59

Page 172

EZTwain Pro User Guide

DIB_BufferPageCount.....................96
DIB_CanGetFromClipboard..............67
DIB_CloseInDC..............................61
DIB_ColorCount.............................46
DIB_ColorTableB...........................46
DIB_ColorTableG...........................46
DIB_ColorTableR...........................46
DIB_ComponentCopy.....................65
DIB_Compression..........................45
DIB_ConvertToFormat....................58
DIB_ConvertToPixelType.................58
DIB_Copy.....................................43
DIB_Create...................................43
DIB_CreatePalette.........................66
DIB_Darkness...............................64
DIB_Depth....................................44
DIB_DeskewAngle..........................62
DIB_DrawLine...............................55
DIB_DrawOnWindow......................48
DIB_DrawText...............................52
DIB_DrawToDC.............................48
DIB_EnumeratePrinters..................68
DIB_Fill..55
DIB_FlipHorizontal.........................55
DIB_FlipVertical.............................55
DIB_FormatOfBuffer.......................96
DIB_Free.................................27, 43
DIB_FreeArray...............................43
DIB_FromBitmap...........................50
DIB_FromClipboard........................67
DIB_FromPicture...........................51
DIB_GetCropRect...........................62
DIB_GetFilePageCount...................91
DIB_GetFromClipboard...................67
DIB_GetHistogram.........................64
DIB_GetPrinterName......................68
DIB_GetPrintToFit..........................68
DIB_Height...................................44
DIB_IsBlank..................................64
DIB_IsCompressed........................45
DIB_IsViewOpen..........................113
DIB_LoadArrayFromBuffer..............96
DIB_LoadArrayFromFilename..........92
DIB_LoadFromFilename..................91
DIB_LoadPage...............................91
DIB_LoadPageFromBuffer...............96
DIB_LoadPagesFromFilename..........92
DIB_Lock......................................66
DIB_MedianFilter...........................63
DIB_Negate..................................55
DIB_OpenInDC..............................61
DIB_PageCountOfBuffer..................96

DIB_PaintMask..............................60
DIB_PhysicalHeight........................45
DIB_PhysicalWidth.........................45
DIB_PixelType...............................44
DIB_Print......................................69
DIB_PrintArray..............................70
DIB_PrinterName...........................68
DIB_PrintFile.................................69
DIB_PrintJobBegin.........................70
DIB_PrintJobEnd............................70
DIB_PrintNoPrompt........................69
DIB_PrintPage...............................70
DIB_PutOnClipboard......................67
DIB_ReadData...............................47
DIB_ReadRow...............................47
DIB_ReadRowChannel....................47
DIB_ReadRowGray.........................47
DIB_ReadRowRGB.........................47
DIB_RegionCopy............................59
DIB_Resample...............................57
DIB_Rotate180..............................56
DIB_Rotate90...............................56
DIB_RowBytes...............................45
DIB_SamplesPerPixel.....................44
DIB_ScaledCopy............................57
DIB_ScaleToGray...........................58
DIB_SelectPageToLoad...................91
DIB_SetColorCount........................66
DIB_SetColorTableRGB...................46
DIB_SetGrayColorTable..................46
DIB_SetPrintToFit..........................68
DIB_SetResolutionInt.....................46
DIB_SetTextAngle..........................53
DIB_SetTextColor..........................53
DIB_SetTextFace...........................53
DIB_SetTextFormat........................54
DIB_SetTextHeight........................52
DIB_SetViewImage......................113
DIB_SetViewOption......................115
DIB_SimpleThreshold.....................57
DIB_Size......................................45
DIB_SmartThreshold...............58, 125
DIB_SpecifyPrinter.........................68
DIB_SwapRedBlue.........................66
DIB_Thumbnail.............................57
DIB_ToDibSection..........................50
DIB_ToImage................................50
DIB_ToPicture...............................51
DIB_Unlock...................................66
DIB_View....................................113
DIB_ViewClose............................114
DIB_Width....................................44

Page 173

EZTwain Pro User Guide

DIB_WriteArrayToBuffer.................95
DIB_WriteArrayToFilename.............88
DIB_WriteRow...............................47
DIB_WriteRowChannel...................48
DIB_WriteToBuffer.........................95
DIB_WriteToFilename...............88, 94
DIB_XResolution............................45
DIB_YResolution............................45
DIBSection.........................49, 50, 61
DibToImage..................................50
digital still camera.........................18
displaying an image.....................113
document feeder....................19, 127
document information dictionary (DID)

..100
drawing a line...............................55
drawing text into images................52
DS...153
DSC...

see Digital Still Camera...............18
encryption...................................106
enumerating.....................................

available printers........................68
barcode engines.........................72
OCR engines..............................80
Sources.....................................38

error diffusion...............................58
errors..

reporting..........................116, 150
suppressing..............................116

Extended Image Information...........40
EZT3MT.LIB...............................6, 11
EZT4Curl.dll............................4, 107
EZT4Dcx.dll....................................4
EZT4Gif.dll.....................................4
EZT4Jpeg.dll...................................4
EZT4Pdf.dll.....................................4
EZT4Png.dll....................................4
EZT4Symbol.dll.........................4, 75
EZT4Tiff.dll.....................................4
EZTWAIN_Attach...........................11
EZTWAIN_Detach..........................11
eztwain.log file............................118
Eztwain4.dll....................................4
fax file..52
feeder...127
file extension from format...............94
file format from extension...............94
file formats...3, 15, 17, 33, 84, 86, 87,

93, 94, 153, 155
BMP..153
JFIF...155
PDF...155

PNG..155
TIFF..156

File Save dialog.............................88
File Transfer Mode.........................33
filling with solid color.....................55
FIX32...155
Flate compression..........................85
flipping an image...........................55
form field...

when uploading........................108
Foxit Reader................................103
Frames.......................................144
frob..157
functions..

barcode.....................................72
capability.................................131
clipboard...................................67
container...................131, 142, 145
extended image info...................40
image acquisition........................26
licensing....................................23
OCR..79
PDF specific..............................100
post-processing..........................36
printing.....................................68
source (device) selection.............38
TIFF..97
tone curves..............................139
TWAIN state.............................119
uploading.................................107

GDI+...49
GIF..4, 85

definition.................................155
Glossary.....................................153
grayscale...

converting to..............................58
HBITMAP.................................49, 50
HCONTAINER.......................162, 169
HDC...50
hidden text.................................102
histogram.....................................64
History.txt......................................6
how to...

acquire an image........................15
append to TIFF & PDF files...........22
call EZTwain from other languages10
check for device on-line...............22
choose a file format....................84
control a feeder (ADF).................19
enumerate installed sources.........14
get started with EZTwain...............8
hide the scanner UI.....................18
negotiate scanning parameters.....16

Page 174

EZTwain Pro User Guide

obtain a License Key...................12
redistribute EZTwain...................12
scan a multipage document.........17
select a device for input...............13
skip blank pages.........................20
statically link to EZTwain.............11
use the Code Wizard.....................8

ICAP_AUTOBRIGHT......................126
ICAP_AUTOMATICDESKEW..............36
ICAP_AUTOMATICROTATION...........22
ICAP_COMPRESSION....................130
ICAP_GAMMA..............................126
ICAP_HIGHLIGHT.........................126
ICAP_THRESHOLD........................125
IETF RFC 2301..............................99
image acquisition...........................26
image alignment (deskew)..............62
image analysis..............................64
Image class (.NET)........................49
image enhancement.......................62
image files.......................................

loading......................................96
image layout...............................133
image viewer options....................115
image viewer window...................113
image viewing.............................113
implementing Edit-Paste.................67
imprinter step size.......................141
In-House Application License...........24
Index...171
indicators....................................129
Intelligent Character Recognition (ICR)

..79
item type....................................162
JavaScript106
JFIF files..........................86, 87, 155
JPEG......................3, 85, 86, 87, 155
JPEG compression.............................

in TIFF files..........................87, 97
justifying text (DIB_DrawText)........54
LabVIEW.......................................10
LeadTools Barcode Engine...............73
libcurl library...............................107
license keys..................................12

using...23
License.txt......................................6
licensing..

In-House Application License........24
Universal Redistribution License. . .23

Licensing Wizard.............................6
log file...

directory..................................118

turning on and off.....................118
writing to.................................118

Logitech QuickCam........................18
Lotus Notes....................................6
LotusScript...................................10
low-level TWAIN functions.............150
masking.......................................59
media..

reflective.................................126
median filter.................................63
message boxes.................................

setting caption...........................23
metadata...

in PDF files...............................100
Microsoft Access............................10
Microsoft Visual C++.......................9
modeless..

image viewer............................114
multipage...

file viewing..............................113
file writing.................................89
scanning..............................28, 34
transfers....................................26
 file page count..........................91
 file reading...............................91

multithreading..................................
and static linking........................11
how to multithread....................167

negating an image.........................55
OCR...79

of scanned pages, automatic........37
orientation of text.......................82
zones/zonal...............................81

OCR Engine Codes.........................80
OCR_ClearText..............................82
OCR_EngineName..........................80
OCR_GetCharPositions....................82
OCR_GetCharSizes.........................82
OCR_GetText................................82
OCR_IsAvailable............................79
OCR_IsEngineAvailable...................80
OCR_RecognizeDib.........................81
OCR_RecognizeDibZone..................81
OCR_SelectDefaultEngine...............80
OCR_SelectedEngine......................80
OCR_SelectEngine.........................80
OCR_SetEngineKey........................80
OCR_SetEnginePath.......................80
OCR_SetLineBreak.........................81
OCR_Text.....................................81
OCR_TextLength............................82
OCR_TextOrientation......................82

Page 175

EZTwain Pro User Guide

OCR_Version.................................79
OCR_WritePage.............................83
OCR_WriteTextToPDF.....................83
Optical Character Recognition..........79
optional DLLs................................86
Organization License......................24
orientation of OCR'd text................82
owner password...........................103
palettes..................................48, 66
paper dimensions.........................138
paper sizes..................................138
parent window..................................

disabling....................................35
Paste command.............................67
patch (barcode).............................72
PDF..............3, 4, 17, 28, 85, 91, 155
PDF...

JPEG compression.......................87
PDF Encryption............................103
PDF Encryption and Appending......104
PDF Passwords............................103
PDF_DocumentProperty................100
PDF_DrawInvisibleText.................102
PDF_DrawText.............................102
PDF_GetDocumentProperty...........101
PDF_GetPDFACompliance..............106
PDF_GetPermissions.....................105
PDF_SelectedPageSize..................102
PDF_SelectPageSize.....................101
PDF_SetAuthor............................100
PDF_SetCompression....................101
PDF_SetCreator...........................100
PDF_SetKeywords........................100
PDF_SetOpenPassword.................104
PDF_SetOwnerPassword...............104
PDF_SetPDFACompliance..............106
PDF_SetPermissions.....................105
PDF_SetProducer.........................100
PDF_SetSubject...........................100
PDF_SetTextVisible......................102
PDF_SetTitle...............................100
PDF_SetUserPassword..................104
PDF/A – ISO 19005......................106
PDF/A compliance........................106
Perl..10
Perl...

sample application........................6
using EZTwain from....................10

Picture object..........................49, 51
PictureBox....................................51
pixel flavor..................................148
pixel type..........16, 58, 122, 123, 125
pixel types....................................44

PNG..............................3, 4, 85, 155
Portable Document Format............155
Portable Network Graphics............155
position..

of image view window...............115
post-processing.............................36

auto OCR...................................37
auto-contrast.............................36
auto-crop...................................36
auto-negate...............................37
deskew......................................36
skip blank pages.........................36

PowerBASIC..................................10
PowerBuilder...................................6
print queue...................................69
print-to-fit flag..............................68
printer..166
printing..68

multipage..................................69
product name........................23, 147
Progress 4GL.............................6, 10
prompt user......................................

to continue scanning...................32
quality...

of JPEG compression...................87
radians...62
random stuff.....................................

how to do..................................22
RC4 encryption............................103
Readme.txt.....................................6
redistributing EZTwain....................12
redistribution of the EZTwain DLLs...12
region-of-interest (ROI).........133, 134
resampling....................................57
resolution................................16, 69

definition.................................155
loss by Picture objects.................51
of images..................................57
scanning...........................123, 124

rotation..
of text.......................................53

sample application............................
Microsoft Access...........................6
Perl...6
VB.NET.......................................7

Save File dialog.............................27
scale-to-gray.................................58
scanning..

duplex.....................................128
simplex...................................128

Select Source dialog...............13, 154
server response...........................112
settings dialog.............................140

Page 176

EZTwain Pro User Guide

shadow value..............................126
sizes of paper..............................138
skipping blank pages......................36
Source..153
Source Manager.............................34
standard BMP formats....................84
standard paper sizes....................138
state..

TWAIN States...........................157
State 1..........................26, 119, 157
State 2.................119, 120, 157, 167
State 3.........................119, 120, 157
State 4.....16, 26, 119, 120, 131, 134,

135, 141, 157, 163
State 5...................28, 119, 121, 157
State 6.........................119, 121, 157
State 7.........................119, 121, 158
state change.................................34
static link library.............................6
strings..144
Sybase PowerBuilder........................9
symbol (barcode)...........................72
symbology (barcode)......................72
system default printer....................68
tacky default title...........................23
Tagged Image File Format.............156
TBitmap (Delphi)...........................49
text...

annotation.................................52
text color......................................53
text height....................................52
text orientation.............................53
text typeface.................................53
thresholding..........................58, 125
thumbnails.......................................

creating.....................................57
definition.................................156

TIFF.........................3, 4, 17, 84, 156
TIFF...

appending to........................22, 87
Class F......................................99
compression modes....................97
for facsimile (fax).......................99
image description.......................97
JPEG compression.......................87
multipage..................................91
reading tags...............................99
setting tags................................98
standard....................................98
strip size...................................97

TOCR...
reseller version...........................80

TOCR (Transym) engine.................79
Transfer Mechanism.....................156
Transfer Mode.................33, 129, 156
Transym Computer Services Ltd......79
Triplet..156
TW_FIX32............................132, 149
TWAIN...

Compliance..............................157
Not an acronym........................156
States.....................................157
Working Group.........................157

TWAIN State..........................26, 119
TWAIN Working Group..................154
TWAIN_AbortAllPendingXfers.........121
TWAIN_Acquire.............................27
TWAIN_AcquireCount.....................32
TWAIN_AcquireFile........................33
TWAIN_AcquireImagesToFiles.........30
TWAIN_AcquireMemoryCallback.....148
TWAIN_AcquireMultipageFile...........28
TWAIN_AcquirePagesToFiles............31
TWAIN_AcquireToArray..................29
TWAIN_AcquireToFilename.............27
TWAIN_ApplicationLicense..............23
TWAIN_AutoClickButton................147
TWAIN_BeginMultipageFile..............89
TWAIN_BlankDiscardCount.............32
TWAIN_Blocked...........................147
TWAIN_BuildName.......................148
TWAIN_ClearError........................117
TWAIN_CloseSource.....................121
TWAIN_Compression....................130
TWAIN_DefaultSourceName............39
TWAIN_DibWritePage.....................89
TWAIN_DisableExtendedInfo...........40
TWAIN_DisableParent...................121
TWAIN_DisableSource..................121
TWAIN_DoSettingsDialog..............140
TWAIN_DS..................................156
TWAIN_EasyVersion.......................34
TWAIN_EnableDuplex...................128
TWAIN_EnableExtendedInfo............40
TWAIN_EnableSource............120, 121
TWAIN_EnableSourceUiOnly..........140
TWAIN_EndMultipageFile................89
TWAIN_EndXfer...........................121
TWAIN_ErrorBox..........................117
TWAIN_ExtendedInfoFloat..............41
TWAIN_ExtendedInfoInt.................41
TWAIN_ExtendedInfoItemCount......41
TWAIN_ExtendedInfoItemType........41
TWAIN_ExtendedInfoString.............42

Page 177

EZTwain Pro User Guide

TWAIN_ExtensionFromFormat.........94
TWAIN_FormatFromExtension.........94
TWAIN_FormatOfFile......................91
TWAIN_FormatVersion...................93
TWAIN_Get..........................131, 163
TWAIN_GetAutoContrast.................36
TWAIN_GetAutoCrop......................36
TWAIN_GetAutoDeskew..................36
TWAIN_GetAutoNegate...................37
TWAIN_GetAutoOCR......................37
TWAIN_GetBitDepth.....................123
TWAIN_GetBlankPageMode.............36
TWAIN_GetBlankPageThreshold.......37
TWAIN_GetBuildName..................148
TWAIN_GetCapBool..............131, 140
TWAIN_GetCapCurrent.................149
TWAIN_GetCapUint16...................132
TWAIN_GetConditionCode.............117
TWAIN_GetCurrent...............131, 163
TWAIN_GetCurrentResolution........123
TWAIN_GetCurrentThreshold.........125
TWAIN_GetCurrentUnits........122, 134
TWAIN_GetCustomDataToFile........141
TWAIN_GetDefault.......................131
TWAIN_GetDefaultImageLayout.....134
TWAIN_GetDefaultSourceName.......39
TWAIN_GetDuplexSupport............128
TWAIN_GetExtendedInfoFrame........42
TWAIN_GetExtendedInfoString........41
TWAIN_GetFileAppendFlag..............87
TWAIN_GetHideUI.........................34
TWAIN_GetImageLayout...............134
TWAIN_GetJpegQuality...................87
TWAIN_GetLastErrorText..............116
TWAIN_GetMultipageFormat...........35
TWAIN_GetMultiTransfer.................34
TWAIN_GetNextSourceName...........38
TWAIN_GetPaperDimensions.........138
TWAIN_GetPixelType....................122
TWAIN_GetResultCode.................117
TWAIN_GetSaveFormat..................94
TWAIN_GetSourceIdentity.............150
TWAIN_GetSourceName.................39
TWAIN_GetTiffCompression.............97
TWAIN_GetTiffStripSize..................97
TWAIN_GetTiffTagAscii...................99
TWAIN_GetYResolution.................123
TWAIN_HasFeeder.......................127
TWAIN_IsAutoFeedOn..................127
TWAIN_IsAvailable.........................34
TWAIN_IsDcxAvailable...................93
TWAIN_IsDone............................119
TWAIN_IsDuplexEnabled...............128

TWAIN_IsExtendedInfoEnable.........40
TWAIN_IsExtendedInfoSupported....40
TWAIN_IsFeederLoaded................127
TWAIN_IsFeederSelected..............127
TWAIN_IsFileExtensionAvailable......93
TWAIN_IsFormatAvailable...............93
TWAIN_IsGifAvailable.....................93
TWAIN_IsJpegAvailable..................93
TWAIN_IsMultipageFileOpen...........90
TWAIN_IsPdfAvailable....................93
TWAIN_IsPngAvailable...................93
TWAIN_IsTiffAvailable....................93
TWAIN_IsViewOpen......................113
TWAIN_LastErrorCode..................116
TWAIN_LastErrorText...................116
TWAIN_LastOutputFile....................94
TWAIN_LoadSourceManager..........120
TWAIN_LogFile............................118
TWAIN_LogFileName....................118
TWAIN_MessageHook............149, 150
TWAIN_Mgr.................................156
TWAIN_MultipageCount............28, 90
TWAIN_NextSourceName................38
TWAIN_OpenDefaultSource......27, 120
TWAIN_OpenSource.....................120
TWAIN_OpenSourceManager.........120
TWAIN_OrganizationLicense............24
TWAIN_PagesInFile........................91
TWAIN_PixelFlavor.......................148
TWAIN_PlanarChunky...................148
TWAIN_PrintFile............................69
TWAIN_PromptToContinue..............32
TWAIN_RecordError......................116
TWAIN_ReportLastError................116
TWAIN_Reset..............................131
TWAIN_ResetColorResponse..........139
TWAIN_ResetGrayResponse..........139
TWAIN_ResetImageLayout............134
TWAIN_ResetRegion.....................133
TWAIN_ResetTiffTags.....................98
TWAIN_SelectFeeder....................127
TWAIN_SelectImageSource.............38
TWAIN_SelfTest...........................146
TWAIN_Set..........................131, 163
TWAIN_SetApplicationKey...............23
TWAIN_SetAppTitle........................23
TWAIN_SetAutoBright..................126
TWAIN_SetAutoContrast.................36
TWAIN_SetAutoCrop......................36
TWAIN_SetAutoDeskew..................36
TWAIN_SetAutoFeed....................127
TWAIN_SetAutoNegate...................37
TWAIN_SetAutoOCR.......................37

Page 178

EZTwain Pro User Guide

TWAIN_SetAutoScan....................127
TWAIN_SetBitDepth.....................123
TWAIN_SetBlankPageMode.............36
TWAIN_SetBlankPageThreshold.......37
TWAIN_SetCapability............132, 165
TWAIN_SetCapBool......................132
TWAIN_SetCapFix32R...................132
TWAIN_SetCapOneValue...............132
TWAIN_SetColorResponse.............139
TWAIN_SetCompression...............130
TWAIN_SetCurrentPixelType..........123
TWAIN_SetCustomDataFromFile....141
TWAIN_SetFileAppendFlag..............87
TWAIN_SetFrame.................135, 136
TWAIN_SetGamma......................126
TWAIN_SetGrayResponse..............139
TWAIN_SetHideUI..........................34
TWAIN_SetHighlight.....................126
TWAIN_SetImageLayout........134, 136
TWAIN_SetIndicators...................129
TWAIN_SetJpegQuality...................87
TWAIN_SetLightPath....................126
TWAIN_SetLogFolder....................118
TWAIN_SetLogName....................118
TWAIN_SetMultipageFormat............35
TWAIN_SetMultiTransfer.................34
TWAIN_SetOutputPageCount...........90
TWAIN_SetPaperSize....................136
TWAIN_SetPixelFlavor..................148
TWAIN_SetPlanarChunky..............148
TWAIN_SetRegion........................133
TWAIN_SetResolution...................124
TWAIN_SetResolutionInt...............124
TWAIN_SetSaveFormat..................94
TWAIN_SetScanAnotherPagePrompt.32
TWAIN_SetShadow......................126
TWAIN_SetThreshold....................125
TWAIN_SetTiffCompression.......87, 97
TWAIN_SetTiffDocumentName........97
TWAIN_SetTiffImageDescription......97
TWAIN_SetTiffStripSize..................97
TWAIN_SetTiffTagBytes..................98
TWAIN_SetTiffTagDouble................98
TWAIN_SetTiffTagLong...................98
TWAIN_SetTiffTagRational..............98
TWAIN_SetTiffTagRationalArray.......98
TWAIN_SetTiffTagShort..................98
TWAIN_SetTiffTagString.................98
TWAIN_SetTiled...........................148
TWAIN_SetUnits...................122, 134
TWAIN_SetVendorKey....................23
TWAIN_SetViewOption..................115

TWAIN_SetXferCount...................122
TWAIN_SetXResolution.................124
TWAIN_SetYResolution.................124
TWAIN_SingleMachineLicense.........25
TWAIN_SourceName......................39
TWAIN_State.......................119, 121
TWAIN_SupportsFileXfer...............129
TWAIN_SuppressErrorMessages.....116
TWAIN_TiffTagAscii........................99
TWAIN_Tiled...............................148
TWAIN_ToFix32R.........................149
TWAIN_UnloadSourceManager.......121
TWAIN_UserClosedSource.............148
TWAIN_ViewClose........................114
TWAIN_ViewFile...........................113
TWAIN_WriteToFilename................88
TWAIN_WriteToLog......................118
TWAIN_XferMech.........................129
TWEI_ constants............................40
TWFF_BMP....................................86
TWFF_DCX....................................86
TWFF_GIF.....................................86
TWFF_JFIF....................................86
TWFF_PDF....................................86
TWFF_PNG....................................86
TWFF_TIFF....................................86
Twirl TWAIN Probe............6, 161, 164
TWPT_CMY....................................44
TWPT_CMYK..................................44
TWPT_GRAY..................................44
TWPT_PALETTE........................44, 58
TWPT_RGB....................................44
unit of measure.....122, 123, 124, 134
units..122
Universal Redistribution License. 12, 23
UPLOAD_AddCookie.....................109
UPLOAD_AddFormField..........108, 111
UPLOAD_AddHeader.....................109
UPLOAD_ClearResponse................112
UPLOAD_DibsSeparatelyToURL......110
UPLOAD_DibsToURL.....................110
UPLOAD_DibToURL.......................110
UPLOAD_EnableProgressBar..........109
UPLOAD_FilesToURL.....................110
UPLOAD_GetResponse..................112
UPLOAD_IsAvailable.....................107
UPLOAD_IsEnabledProgressBar......109
UPLOAD_MaxFiles........................107
UPLOAD_Response.......................112
UPLOAD_ResponseLength.............112
UPLOAD_Version..........................107
uploading...

Page 179

EZTwain Pro User Guide

files...110
form fields...............................108
functions..................................107
server response........................112
with HTTP-POST.......................107

US Legal (paper size)...................136
US Letter (paper size)..................136
user interface..............................157
user interface...................................

hiding...17, 18, 19, 26, 34, 121, 129
user password.............................103
Vanilla (vanilla pixels)..................148
VB Picture objects..........................49
VB.NET...8
VBA..6, 10
version..

of file format module...................93
of OCR subsystem.......................80

of upload module......................107
Visual Basic.................................7, 8
Visual FoxPro..............................7, 9
webcams........................16, 153, 156
webcams..

using without UI.........................18
webserver...................................107
Where to Put the DLLs....................12
windows...

drawing on................................48
XMP metadata.............................106
zones...

OCR..81
zones - barcode.......................72, 77
 45, 129
.MPT..28
.NET Image object.........................50

Page 180

	Table of Contents
	Introduction
	Overview
	EZTwain Components
	EZTwain Developer Files

	How-To Guide
	How To: Use the Code Wizard to get started
	Microsoft Visual Basic 5, 6, or 7
	C# and VB.NET
	Microsoft Visual FoxPro
	Borland Delphi
	Microsoft Visual C++
	LotusScript
	PowerScript - PowerBuilder

	How To: Use EZTwain from other languages
	LabVIEW
	Perl
	Borland C++ Builder (BCB)
	Microsoft Access (VBA)
	Clarion, dBASE (dBASE+, VDB), PowerBASIC, Progress 4GL
	Java
	Other languages

	How To: Statically Link to EZTwain
	How To: Redistribute EZTwain with your Application
	Where to Put the DLLs

	How To: Obtain a License Key
	How To: Select a Device for Input
	Displaying the Select Source Dialog
	Enumerating the available sources
	Opening a Source by Name

	How To: Acquire an Image
	How To: Negotiate Scanning Parameters
	How To: Scan a Multipage Document
	How To: Hide the Source User Interface
	In theory
	In practice

	How To: Control a Document Feeder (ADF)
	How To: Skip Blank Pages
	How To: Read Patch Codes
	How To: Append to PDF, TIFF & DCX Files
	How To: Check for Device On-Line
	How To: Do Other Random Stuff

	Function Reference
	Functions – Application Name & Licensing
	TWAIN_SetAppTitle
	TWAIN_ApplicationLicense
	TWAIN_SetApplicationKey
	TWAIN_SetVendorKey
	TWAIN_OrganizationLicense
	TWAIN_SingleMachineLicense

	Functions – Image Acquisition
	General Comments
	Single Image Scanning Functions
	TWAIN_AcquireToFilename
	TWAIN_Acquire
	Multi-image Scanning Functions
	TWAIN_AcquireMultipageFile
	TWAIN_AcquireToArray
	TWAIN_AcquireImagesToFiles
	Auto-numbering

	TWAIN_AcquirePagesToFiles
	TWAIN_AcquireCount
	TWAIN_BlankDiscardCount
	TWAIN_PromptToContinue
	TWAIN_SetScanAnotherPagePrompt
	TWAIN_AcquireFile

	Functions – Global Modes & Queries
	TWAIN_EasyVersion
	TWAIN_IsAvailable
	TWAIN_SetHideUI / TWAIN_GetHideUI
	TWAIN_SetMultiTransfer / TWAIN_GetMultiTransfer
	TWAIN_DisableParent / TWAIN_GetDisableParent
	TWAIN_SetMultipageFormat
TWAIN_GetMultipageFormat

	Functions – Post-Processing
	TWAIN_SetAutoCrop/TWAIN_GetAutoCrop
	TWAIN_SetAutoContrast/TWAIN_GetAutoContrast
	TWAIN_SetAutoDeskew/TWAIN_GetAutoDeskew
	TWAIN_SetBlankPageMode / TWAIN_GetBlankPageMode
	TWAIN_SetBlankPageThreshold / TWAIN_GetBlankPageThreshold
	TWAIN_SetAutoOCR / TWAIN_GetAutoOCR
	TWAIN_SetAutoNegate/TWAIN_GetAutoNegate
	Source (Device/Driver) Selection
	TWAIN_SelectImageSource
	TWAIN_GetSourceList
	TWAIN_GetNextSourceName/TWAIN_NextSourceName
	TWAIN_GetDefaultSourceName
TWAIN_DefaultSourceName
	TWAIN_SourceName
	TWAIN_GetSourceName

	Functions – Extended Image Information
	TWAIN_IsExtendedInfoSupported
	TWAIN_EnableExtendedInfo
	TWAIN_IsExtendedInfoEnable
	TWAIN_DisableExtendedInfo
	Reading Extended Information
	TWAIN_ExtendedInfoItemCount
	TWAIN_ExtendedInfoItemType
	TWAIN_ExtendedInfoInt
	TWAIN_ExtendedInfoFloat
	TWAIN_GetExtendedInfoString
	TWAIN_ExtendedInfoString
	TWAIN_GetExtendedInfoFrame

	Functions – DIBs & Image Processing
	Creating and Freeing DIBs
	DIB_Allocate
	DIB_Create
	DIB_Copy
	DIB_Free
	DIB_FreeArray
	Querying DIB Properties
	DIB_Width
	DIB_Height
	DIB_PixelType
	DIB_Depth / DIB_BitsPerPixel
	DIB_SamplesPerPixel
	DIB_BitsPerSample
	DIB_XResolution / DIB_YResolution
	DIB_PhysicalWidth / DIB_PhysicalHeight
	DIB_IsCompressed
	DIB_Compression
	DIB_RowBytes
	DIB_Size
	DIB_ColorCount
	DIB_ColorTableR / DIB_ColorTableG / DIB_ColorTableB
	Setting DIB Properties
	DIB_SetResolution/DIB_SetResolutionInt
	DIB_SetGrayColorTable
	DIB_SetColorTableRGB
	Reading and Writing DIB Data
	DIB_ReadRow
DIB_ReadRowRGB
DIB_ReadRowGray
DIB_ReadRowChannel
	DIB_ReadData
	DIB_WriteRow
	DIB_WriteRowChannel
	Drawing (Rendering) DIBs
	DIB_DrawOnWindow
	DIB_DrawToDC
	Converting between DIB and other image formats
	DIB_ToDibSection
	DIB_FromBitmap
	DIB_ToImage/DibToImage
	Converting between DIBs and VB Pictures
	DIB_ToPicture
	DIB_FromPicture
	Drawing Text into DIBs
	DIB_DrawText
	Note: Anisotropic images
	DIB_SetTextHeight
	DIB_SetTextColor
	DIB_SetTextAngle
	DIB_SetTextFace
	DIB_SetTextFormat
	DIB Transformations & Drawing
	DIB_DrawLine
	DIB_Fill
	DIB_Negate
	DIB_AdjustBC
	DIB_FlipVertical
	DIB_FlipHorizontal
	DIB_Rotate180
	DIB_Rotate90
	DIB Scaling, Resampling & Format Conversion
	DIB_ScaledCopy
	DIB_Resample
	DIB_Thumbnail
	DIB_SimpleThreshold
	DIB_SmartThreshold
	DIB_ConvertToPixelType
	DIB_ConvertToFormat
	DIB_ScaleToGray
	DIB Block Copy and Masking
	DIB_RegionCopy
	DIB_Blt
	DIB_BltMask
	DIB_PaintMask
	Working with a DIB through a DC
	DIB_OpenInDC
	DIB_CloseInDC
	DIBs: Automatic Image Improvement
	DIB_AutoCrop
	DIB_GetCropRect
	DIB_AutoDeskew
	DIB_DeskewAngle
	DIB_AutoContrast
	DIB_MedianFilter
	DIBs: Image Analysis
	DIB_IsBlank
	DIB_Darkness
	DIB_GetHistogram
	DIB_Avg/DIB_AvgRegion/DIB_AvgRow/DIB_AvgColumn
	DIB_ComponentCopy
	DIBs: Miscellaneous
	DIB_SetColorCount
	DIB_SwapRedBlue
	DIB_CreatePalette
	DIB_Lock
	DIB_Unlock
	DIBs: Clipboard Functions
	DIB_PutOnClipboard
	DIB_CanGetFromClipboard
	DIB_GetFromClipboard
	DIB_FromClipboard

	Functions – Printing
	Configuration
	DIB_SpecifyPrinter
	DIB_EnumeratePrinters
	DIB_PrinterName / DIB_GetPrinterName
	DIB_SetPrintToFit / DIB_GetPrintToFit
	Single-Page Printing
	DIB_Print
	DIB_PrintNoPrompt
	Multipage Printing from a File

	DIB_PrintFile (alias TWAIN_PrintFile)
	Multipage Printing – DIBs

	DIB_PrintArray
	DIB_PrintJobBegin
	DIB_PrintPage
	DIB_PrintJobEnd

	Functions – Barcode Recognition
	Introduction
	Supported Barcode Engines
	1. EZTwain Native Barcode Engine
	2. LEADTOOLS Linear 1D Symbols Engine
	3. Black Ice 1D Barcode Engine
	4. Axtel AX-4 Linear Barcode Engine
	5. Inspirant “INBarcodeOCR” Linear Barcode Engine

	BARCODE_IsAvailable
	BARCODE_IsEngineAvailable
BARCODE_SelectEngine
BARCODE_SelectedEngine
BARCODE_EngineName
	BARCODE_ReadableCodes
	BARCODE_TypeName
	BARCODE_SetDirectionFlags
BARCODE_GetDirectionFlags
BARCODE_AvailableDirectionFlags
	BARCODE_SetZone
BARCODE_NoZone
	BARCODE_Recognize
	BARCODE_Type
	BARCODE_Text
	BARCODE_GetText
	BARCODE_GetRect

	Functions – Optical Character Recognition (OCR)
	Introduction
	OCR_IsAvailable
	OCR_Version
	OCR_IsEngineAvailable
OCR_SelectEngine
OCR_SelectDefaultEngine
OCR_SelectedEngine
OCR_EngineName
	OCR_SetEngineKey
	OCR_SetEnginePath
	OCR_SetLineBreak
	OCR_RecognizeDib
	OCR_RecognizeDibZone
	OCR_Text
	OCR_GetText
	OCR_TextLength
	OCR_TextOrientation
	OCR_GetCharPositions
OCR_GetCharSizes
	OCR_ClearText
	OCR_WritePage
	OCR_WriteTextToPDF

	Functions – Image Files
	File Formats - Restrictions and Options
	How EZTwain Chooses Output Format
	File Format Support - Optional DLLs
	General file-writing settings
	TWAIN_SetFileAppendFlag/TWAIN_GetFileAppendFlag
	TWAIN_SetJpegQuality / TWAIN_GetJpegQuality
	Writing images to files
	DIB_WriteToFilename/TWAIN_WriteToFilename
	DIB_WriteArrayToFilename
	TWAIN_BeginMultipageFile
	TWAIN_DibWritePage
	TWAIN_EndMultipageFile
	TWAIN_IsMultipageFileOpen
	TWAIN_MultipageCount
	TWAIN_SetOutputPageCount
	Loading images from files
	DIB_LoadFromFilename
	TWAIN_FormatOfFile
	DIB_GetFilePageCount/TWAIN_PagesInFile
	DIB_SelectPageToLoad
	DIB_LoadPage
	DIB_LoadArrayFromFilename
	DIB_LoadPagesFromFilename
	General file format inquiries
	TWAIN_IsJpegAvailable
	TWAIN_IsPngAvailable
	TWAIN_IsTiffAvailable
	TWAIN_IsPdfAvailable
	TWAIN_IsGifAvailable
	TWAIN_IsDcxAvailable
	TWAIN_IsFormatAvailable
	TWAIN_FormatVersion
	TWAIN_IsFileExtensionAvailable
	TWAIN_FormatFromExtension
	TWAIN_ExtensionFromFormat
	TWAIN_SetSaveFormat
	TWAIN_GetSaveFormat
	TWAIN_LastOutputFile

	Functions – Image Files in Memory
	Writing Images to Files in Memory
	DIB_WriteToBuffer
	DIB_WriteArrayToBuffer
	Reading Images from Files in Memory
	DIB_FormatOfBuffer
	DIB_PageCountOfBuffer/DIB_BufferPageCount
	DIB_LoadFromBuffer
	DIB_LoadPageFromBuffer
	DIB_LoadArrayFromBuffer

	Functions - TIFF Specific
	TWAIN_SetTiffCompression/TWAIN_GetTiffCompression
	TWAIN_SetTiffStripSize/TWAIN_GetTiffStripSize
	TWAIN_SetTiffImageDescription
TWAIN_SetTiffDocumentName
	TWAIN_SetTiffTagShort
TWAIN_SetTiffTagLong
TWAIN_SetTiffTagDouble
TWAIN_SetTiffTagString
TWAIN_SetTiffTagRational
TWAIN_SetTiffTagRationalArray
TWAIN_SetTiffTagBytes
TWAIN_ResetTiffTags
	TWAIN_GetTiffTagAscii / TWAIN_TiffTagAscii
	Faxing with TIFF: TIFF Class F and RFC 2301

	Functions - PDF Specific
	PDF_SetTitle
PDF_SetAuthor
PDF_SetSubject
PDF_SetKeywords
PDF_SetCreator
PDF_SetProducer
	PDF_DocumentProperty
	PDF_GetDocumentProperty
	PDF_SetCompression
	PDF_SelectPageSize
	PDF_SelectedPageSize
	PDF_DrawText
	PDF_SetTextVisible
	PDF_DrawInvisibleText
	PDF Encryption / PDF Passwords
	Encryption and Appending to an Existing PDF
	PDF_SetOpenPassword
	PDF_SetUserPassword
	PDF_SetOwnerPassword
	PDF_SetPermissions / PDF_GetPermissions
	PDF/A – ISO 19005
	PDF_SetPDFACompliance
PDF_GetPDFACompliance

	Functions – File Uploading
	Overview
	UPLOAD_IsAvailable
	UPLOAD_Version
	UPLOAD_MaxFiles
	UPLOAD_AddFormField
	UPLOAD_AddHeader
	UPLOAD_AddCookie
	UPLOAD_EnableProgressBar
UPLOAD_IsEnabledProgressBar
	UPLOAD_DibToURL
UPLOAD_DibsToURL
UPLOAD_DibsSeparatelyToURL
UPLOAD_FilesToURL
	Server Response
	UPLOAD_ResponseLength
	UPLOAD_ClearResponse
	UPLOAD_Response
	UPLOAD_GetResponse

	Functions – Image Viewing
	TWAIN_ViewFile
	DIB_View
	DIB_SetViewImage
	DIB_IsViewOpen/TWAIN_IsViewOpen
	DIB_ViewClose/TWAIN_ViewClose
	DIB_SetViewOption/TWAIN_SetViewOption

	Functions – Error Handling & Logging
	TWAIN_SuppressErrorMessages
	TWAIN_ReportLastError
	TWAIN_LastErrorCode
	TWAIN_LastErrorText / TWAIN_GetLastErrorText
	TWAIN_RecordError
	TWAIN_ClearError
	TWAIN_GetResultCode
	TWAIN_GetConditionCode
	TWAIN_ErrorBox
	Logging
	TWAIN_LogFile
	TWAIN_WriteToLog
	TWAIN_SetLogName
	TWAIN_LogFileName
	TWAIN_SetLogFolder

	Functions – TWAIN State
	TWAIN_State
	TWAIN_IsDone
	TWAIN_LoadSourceManager
	TWAIN_OpenSourceManager
	TWAIN_OpenDefaultSource
	TWAIN_OpenSource
	TWAIN_EnableSource
	TWAIN_DisableSource
	TWAIN_CloseSource
	TWAIN_UnloadSourceManager
	TWAIN_EndXfer
	TWAIN_AbortAllPendingXfers

	Functions – Capability
	TWAIN_SetXferCount
	TWAIN_GetCurrentUnits
	TWAIN_SetUnits
	TWAIN_GetPixelType
	TWAIN_SetPixelType
	TWAIN_GetBitDepth
	TWAIN_SetBitDepth
	TWAIN_GetCurrent Resolution
	TWAIN_GetYResolution
	TWAIN_SetResolution/TWAIN_SetResolutionInt
	TWAIN_SetXResolution / TWAIN_SetYResolution
	TWAIN_SetContrast
	TWAIN_SetBrightness
	TWAIN_SetThreshold
	TWAIN_GetCurrentThreshold
	TWAIN_SetAutoBright
	TWAIN_SetLightPath
	TWAIN_SetGamma
	TWAIN_SetShadow
	TWAIN_SetHighlight
	Document Feeder Control
	TWAIN_HasFeeder
	TWAIN_IsFeederSelected
	TWAIN_SelectFeeder
	TWAIN_IsAutoFeedOn
	TWAIN_SetAutoFeed
	TWAIN_SetAutoScan
	TWAIN_IsFeederLoaded
	Controlling Duplex Mode
	TWAIN_GetDuplexSupport
	TWAIN_EnableDuplex
	TWAIN_IsDuplexEnabled
	Other Settings
	TWAIN_HasControllableUI
	TWAIN_SetIndicators
	TWAIN_SetXferMech / TWAIN_XferMech
	TWAIN_SupportsFileXfer
	
	TWAIN_SetCompression / TWAIN_Compression
	Raw Capability Get & Set
	TWAIN_Get
	TWAIN_GetDefault
	TWAIN_GetCurrent
	TWAIN_Set
	TWAIN_Reset
	TWAIN_GetCapBool
	TWAIN_GetCapFix32
	TWAIN_GetCapUint16
	TWAIN_SetCapability
	TWAIN_SetCapBool
	TWAIN_SetCapOneValue
	TWAIN_SetCapFix32 / TWAIN_SetCapFix32R
	Region of Interest (ROI)
	TWAIN_SetRegion
	TWAIN_ResetRegion
	TWAIN_SetImageLayout
	TWAIN_GetImageLayout / TWAIN_GetDefaultImageLayout
	TWAIN_ResetImageLayout
	TWAIN_SetFrame
	TWAIN_SetPaperSize
	TWAIN_GetPaperDimensions
	Tone Control
	TWAIN_SetGrayResponse
	TWAIN_SetColorResponse
	TWAIN_ResetGrayResponse/ TWAIN_ResetColorResponse

	Functions – Settings Dialog
	TWAIN_DoSettingsDialog
	TWAIN_EnableSourceUiOnly

	Functions – Custom DS Data
	TWAIN_GetCustomDataToFile
	TWAIN_SetCustomDataFromFile

	Functions – Container
	CONTAINER_Free
	CONTAINER_Copy
	CONTAINER_Equal
	CONTAINER_IsValid
	CONTAINER_Format
	CONTAINER_ItemCount
	CONTAINER_ItemType
	CONTAINER_TypeSize
	CONTAINER_FloatValue / CONTAINER_IntValue
	CONTAINER_StringValue / CONTAINER_GetStringValue
	CONTAINER_ValuePtr
	CONTAINER_ContainsValue
	CONTAINER_FindValue
	CONTAINER_CurrentValue / CONTAINER_DefaultValue
	CONTAINER_CurrentIndex / CONTAINER_DefaultIndex
	CONTAINER_MinValue / CONTAINER_MaxValue
	CONTAINER_StepSize
	CONTAINER_OneValue / CONTAINER_Array
	CONTAINER_Range / CONTAINER_Enumeration
	CONTAINER_SetItem / CONTAINER_SetItemString
	CONTAINER_SetItemFrame
	CONTAINER_SelectDefaultValue / CONTAINER_SelectDefaultItem
	CONTAINER_SelectCurrentValue / CONTAINER_SelectCurrentItem
	CONTAINER_DeleteItem
	CONTAINER_InsertItem

	Functions – Testing & Validation
	TWAIN_Testing123
	TWAIN_SelfTest

	Functions – Obscure (Even for TWAIN)
	TWAIN_AutoClickButton
	TWAIN_RegisterApp
	TWAIN_Blocked
	TWAIN_UserClosedSource
	TWAIN_BuildName
	TWAIN_GetBuildName
	TWAIN_AcquireMemoryCallback
	TWAIN_SetTiled / TWAIN_Tiled
	TWAIN_SetPlanarChunky / TWAIN_PlanarChunky
	TWAIN_SetPixelFlavor / TWAIN_PixelFlavor
	TWAIN_GetCapCurrent
	TWAIN_ToFix32 / TWAIN_ToFix32R
	TWAIN_Fix32ToFloat
	TWAIN_MessageHook
	TWAIN_GetSourceIdentity
	TWAIN_DS
	TWAIN_Mgr
	Functions – Deprecated
	{no functions at this time}

	Glossary
	BMP (BitMaP) File
	Capability
	Container
	Datasource (Source, Data Source, DS)
	Datasource Manager (AKA DSM)
	Default Datasource AKA Default TWAIN Device
	Deskew
	DIB (Device Independent Bitmap)
	FIX32 or TW_FIX32
	GIF - Graphics Interchange Format
	JFIF (JPEG File Interchange Format) File
	JPEG (Joint Photographic Experts Group)
	PDF (Adobe Portable Document Format) File
	PNG (Portable Network Graphics) File
	Resolution
	Thumbnail
	TIFF (Tagged Image File Format) File
	Transfer Mode (AKA Transfer Mechanism AKA Xfer Mech)
	Triplet
	TWAIN
	TWAIN Working Group
	TWAIN Compliance
	TWAIN States
	TWAIN State 1: TWAIN Not Loaded
	TWAIN State 2: Source Manager Loaded
	TWAIN State 3: Source Manager Open
	TWAIN State 4: DS Open
	TWAIN State 5: DS Enabled
	TWAIN State 6: Transfer Ready
	TWAIN State 7: Transfer In Progress

	Appendix 1 - History
	Changes from EZTwain Pro 3.0
	Legal Changes
	Technical Changes

	Appendix 2 - Working with Containers
	Theory
	Practice
	Example 1. Enumerate Resolutions
	Example 2. Custom Capability
	Example 3. Endorser/Imprinter

	Appendix 3 - Multithreading with EZTwain
	Simple Rule for Multithreading
	Complicated Rules for Multithreading

	Appendix 4 - EZTwain Datatypes
	Index

